

# Statistics & Experimental Design with R

Barbara Kitchenham Keele University



### **Analysis of Variance**

Multiple groups with Normally distributed data



#### **Experimental Design**

- LIST
  - Factors you may be able to control
- BLOCK
  - Factors under your control
    - Some factors could be used to restrict scope of experiment
    - E.G. Restrict to Post graduate students
- MEASURE
  - Factors that cant be controlled
  - Possible co-variates
- RANDOMLY
  - Assign units to treatments within blocks



#### **ANOVA**

- Basic Terminology
  - ANOVA stands for Analysis of Variance
  - Consider the problem of deciding whether testing method A is better method B
    - You recruit 20 testers (subjects/participants)
    - Randomly assign 10 to standard method (called a control)
    - Randomly assign 10 to the new method
    - Give them a testing problem & measure outcome (e.g. number of defects detected)
    - The two treatments together are referred to as a **factor** with two **levels**
  - Number of defects is called "dependent variable"
  - Method is called the "independent variable"
    - Takes on two values A or B
  - When you have equal number of participants in each treatment condition
    - Balanced design
    - Otherwise unbalanced
  - This is called a one-way between -groups ANOVA



#### Basic Experimental Designs

- One-way ANOVA means participants classified in one dimension i.e. treatment
  - There can be many treatments
  - Treatments can be independent
    - E.g. Testing methods A, B, C, etc.
  - Treatment may be related
    - Based on the extent of a treatment
    - E.g. Extent of training one day, two days, or 5 days



#### More Complex Designs

- Consider a testing experiment comparing three methods
  - Want to assess how well the methods work with programs of different complexity
  - Assume three methods and three levels of complexity: easy, average, hard
- This experiment has two factors
  - Testing method and complexity
  - For each testing method we want to investigate each complexity condition
- Also interested in the effect of complexity level on the outcome of each method
  - Which is called the interaction between the factors
- For a balanced design we would need the number of participants to be a multiple 9
  - product of number of conditions in each factor
- This design is called a 3 by 3 Factorial experiment



#### Within-subject Designs

- Alternatively suppose we have three testing methods and testing problems all of average complexity
- If each participant tried out each method
  - 20 participants result in 60 observations
  - 20 for each testing method
  - In this case we can treat the individual participants as a blocking factor
    - Analysing the data to remove the effect of difference among participants
    - Hopefully reducing the variance used for our tests
- This give us a within-subjects design



#### Basic On-way ANOVA Model

Fixed effects model

$$x_{ij} = A + E_j + e_{ij}$$

- x<sub>ij</sub> is i-th member of group j
- A is an overall average effect common to all observations
- E<sub>j</sub> is a "fixed" or constant difference from A due to the jth population common to all members of j
- $e_{ij}$  is a random error  $\sim N(0,\sigma^2)$
- H0 is all  $E_j$  are zero and population mean = A



## Model parameters

$$\overline{x}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij} = \frac{1}{n_j} \left( \sum_{i=1}^{n_j} (A + E_j + e_{ij}) \right) \quad \overline{x}_{.j} = A + E_j + \overline{e}_{.j}$$

$$\overline{x}_{..} = \frac{1}{N} \sum_{j=1}^{k} n_j \overline{x}_{.j} = \frac{1}{N} \left( \sum_{j=1}^{k} n_j \left( A + E_j + \overline{e}_{.j} \right) \right)$$

$$\overline{x}_{..} = A + \frac{\sum_{j=1}^{k} n_j E_j}{N} + \overline{e}_{..} = A + \overline{e}_{..}$$
 Assuming  $\frac{\sum_{j=1}^{k} n_j E_j}{N} = 0$ 

$$x_{ij} - \overline{x}_{.j} = e_{ij} - \overline{e}_{.j}$$
 Independent of  $E_j$ 

$$x_{.j} - \overline{x}_{..} = E_j + \overline{e}_{.j} - \overline{e}_{..}$$



### Partitioning Sums of Squares

$$SS = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{..})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} ((x_{ij} - \overline{x}_{.j}) + (\overline{x}_{.j} - \overline{x}_{..}))^2$$

$$= \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2 + \sum_{j=1}^{n_j} n_j (\overline{x}_{.j} - \overline{x}_{..})^2$$

SSW: 
$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (e_{ij} - \overline{e}_{.j})^2 = \sigma^2 \sum_{j=1}^{k} (n_j - 1) = \sigma^2 (N - k)$$

SSB: 
$$\sum_{j=1}^{k} (\bar{x}_{.j} - \bar{x}_{..})^2 = \sum_{j=1}^{k} (E_j + \bar{e}_{.j} - \bar{e}_{..})^2 = \sigma^2(k-1) + \sum_{j=1}^{k} n_j E_j^2$$



#### Rational for F test

- Distribution of ratio of two chi-squared variables is known and called F distribution
- So distribution of ratio of two sample variances (i.e. s<sub>1</sub><sup>2</sup>/s<sub>2</sub><sup>2</sup>) follows the F distribution
- If distribution of measured values is Normal in each group and H0 true
  - Ratio of [SBG/(k-1)]/[SWG/(N-k)]
  - F with degrees of freedom k-1 and N-k respectively



## One-Way ANOVA Table

| Source of Variation | Sum of<br>Squares | Degrees<br>of<br>Freedom | Mean Square | F-ratio |
|---------------------|-------------------|--------------------------|-------------|---------|
| Between<br>Groups   | SSB               | v=k-1                    | MSB=SSB/v   | MSB/MSW |
| Within<br>Groups    | SSW               | v=N-k                    | MSW=SSW/v   |         |
| Total               | SS                |                          |             |         |

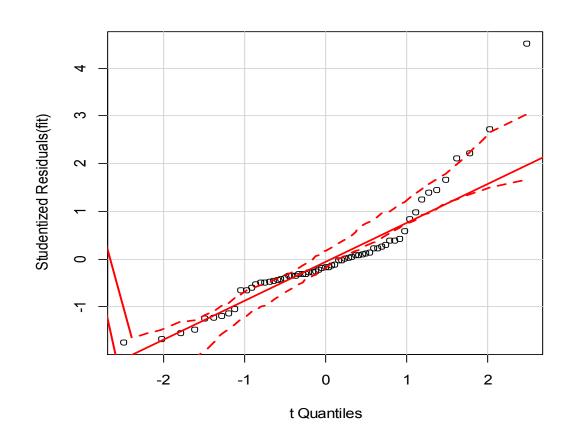


# ANOVA for COCOMO Productivity with Mode as main factor

| Source of Variation | Sum of Squares | Degrees<br>of<br>Freedom | Mean<br>Square | F-ratio                   |
|---------------------|----------------|--------------------------|----------------|---------------------------|
| Between<br>Groups   | 1.197          | 2                        | 0.598          | 13.33 ***<br>(p=1.62e-05) |
| Within<br>Groups    | 2.693          | 60                       | 0.0499         |                           |
| Total               | 3.89           | 62                       | 0.0627         |                           |

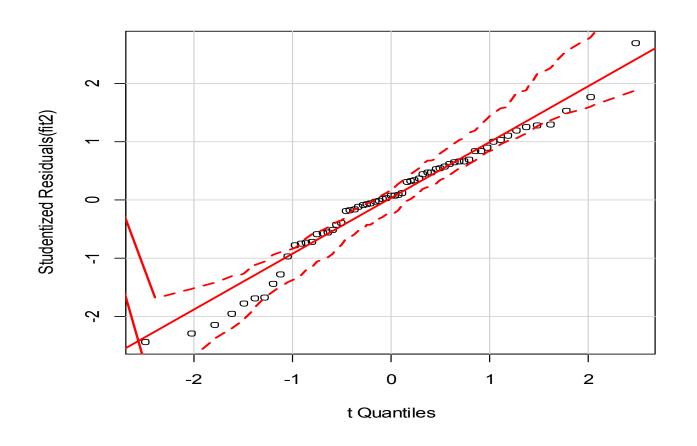


# QQPlot of Productivity data analysis





# QQPlot of ANOVA based on Log(Productivity)





#### Standard ANOVA designs

- Blocked designs
  - Blocking is used for controllable nuisance parameters
  - Simplest design is randomised blocks design
    - Has treatment factor (T) with k-levels
    - Blocking Factor B
    - Each Block has an observation for each treatment
  - E.g. Block are student grades
    - Match k-tuples of students based on grade
    - Randomly assign one subject per block to each of k treatments
  - Interaction between blocks & treatments ignored



# ANOVA Design for Randomised Blocks

|        | Treatments |            |            |
|--------|------------|------------|------------|
| Blocks | T1         | T2         | T3         |
| B1     | S1         | S2         | <b>S</b> 3 |
| B2     | <b>S4</b>  | <b>S</b> 5 | S6         |
| В3     | S7         | S8         | S9         |

| Source     | SS                    | df      | MS        | F     |
|------------|-----------------------|---------|-----------|-------|
| Treatments | SS Between Treatments | k-1     | MST= SST/ | MMST/ |
|            |                       |         | df(T)     | ME    |
| Blocks     | SS Between Blocks     | j-1     | MSB= SSB/ |       |
|            |                       |         | df(B)     |       |
| Error      | SS Within Treatments  | (k-1) × | ME= SSE/  |       |
|            | and Blocks            | (j-1)   | df(E)     |       |



#### Latin-Square

- Two-way Blocking
  - Example would be
    - Participants each try a set of different treatments
      - Individual participants are one block
      - Order that participants are assigned to each treatment is other block

|           |       | Order  |       |  |  |
|-----------|-------|--------|-------|--|--|
| Subjects  | First | Second | Third |  |  |
| <b>S1</b> | T1    | T2     | Т3    |  |  |
| S2        | T2    | Т3     | T1    |  |  |
| S3        | T3    | T1     | T2    |  |  |



# Factorial Design

|          | Factor A    |             |             |  |  |
|----------|-------------|-------------|-------------|--|--|
| Factor B | Level 1     | Level 2     | Level 3     |  |  |
| Level 1  | P1,P2,P3    | P4,P5,P6    | P7,P8,P9    |  |  |
| Level 2  | P10,P11,P12 | P13,P14,P15 | P16,P17,P19 |  |  |

| Source      | SS                 | df            | MS                | F        |
|-------------|--------------------|---------------|-------------------|----------|
| Factor A    | SS Between Factor  | k-1           | MSA= SSA/df(A)    | MSA/MSE  |
|             | A levels           |               |                   |          |
| Factor B    | SS Factor B levels | j-1           | MSB= SSB/df(B)    | MSB/MSE  |
| Interaction | SS Due to          | (k-1) × (j-1) | MSAB= SSAB/df(AB) | MSAB/MSE |
|             | Interaction        |               |                   |          |
|             | between A and B    |               |                   |          |
| Error       | SS Within cells    | k×j × (n-1)   | MSE= SSE/df(E)    |          |



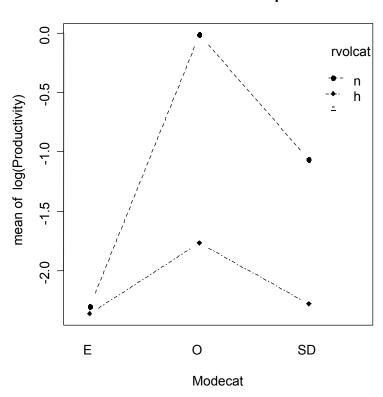
### Factor Analysis Example

- Use a subset of the COCOMO data base
- Select 6 projects from each Mode category
- Such that 3 project in each Mode category
  - Have high requirements volatility
  - Have normal requirements volatility
- One factor with 3 levels and one factor with two levels
  - Balanced 2\*3 Factor Analysis

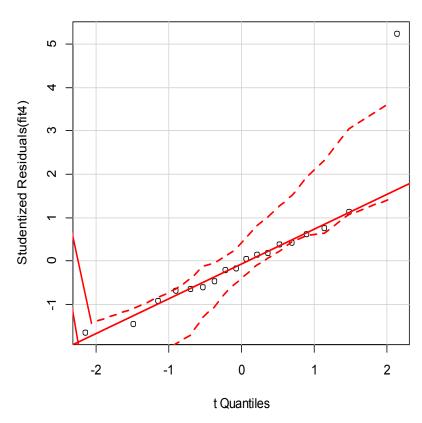


# Log(Productivity) Analysis

#### Interaction between Mode and Requirement Volatility

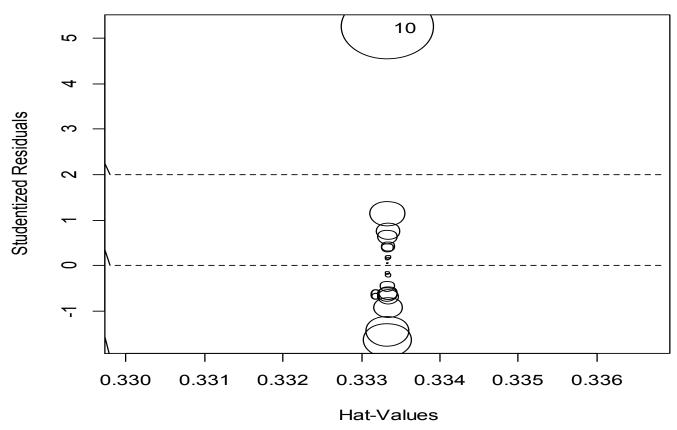


#### QQ Plot for 2-way factorial model





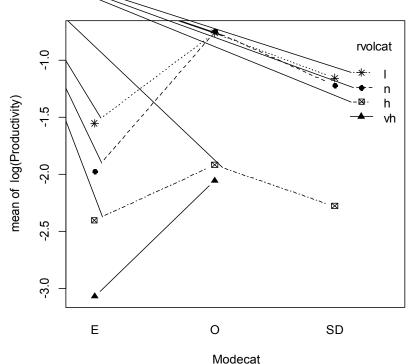
#### Influence Plot for Log(Productivity)

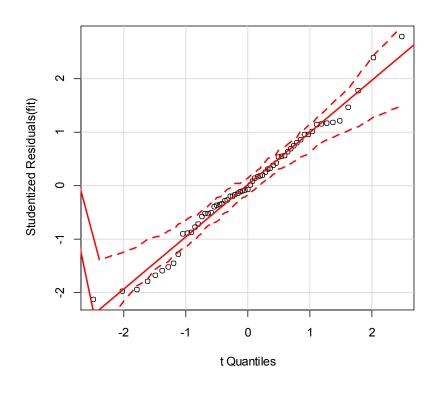




### Full COCOMO Dataset

#### Interaction between Mode and Requirements Volatility







# **AOV** Order dependency

- For full data set factors are not balanced
- Analysis differs depending on which factor entered first

| Mean Log(Productivity) with number of project in each in parenthesis |                                                  |              |             |             |  |  |
|----------------------------------------------------------------------|--------------------------------------------------|--------------|-------------|-------------|--|--|
|                                                                      | Requirements Volatility                          |              |             |             |  |  |
| Mode                                                                 | L N H VH                                         |              |             |             |  |  |
| Е                                                                    | -1.5554 (1)                                      | -1.9730 (11) | -2.404 (11) | -3.0700 (5) |  |  |
| О                                                                    | -0.7644 (2) -0.7511 (15) -1.9205 (4) -2.0554 (2) |              |             |             |  |  |
| SD                                                                   | -1.1595 (2)                                      | -1.2211 (7)  | -2.2785 (3) | NA (0)      |  |  |

| Term | Fitting | Requirements | Mode      | Residuals |
|------|---------|--------------|-----------|-----------|
|      | First   | Volatility   |           |           |
| MS   | Mode    | 4.2***       | 10.318 ** | 0.395     |
| MS   | Req Vol | 7.496 ***    | 5.373 *** | 0.395     |
| df   |         | 3            | 2         | 57        |



#### Random Effects and Mixed Effects

- Random effects model (n observations in each group)  $x_{ij} = \mu + \alpha_i + e_{ij}$ 
  - where  $\alpha_i \sim N(0, \sigma_a^2)$
- Compared with fixed effects
  - $-\alpha_i$  are random variables not fixed quantities to be estimated
  - Null hypothesis  $\alpha_i = 0$  is the same
  - Under H1, expected value of MSBG=  $n\sigma_a^2 + \sigma^2$
  - Differences between models if H0 is false
- Often used to assess different ways of measuring something
  - So main purpose of analysis is to estimate  $\sigma_a^2$
  - Rarely used in SE except for meta-analysis
- Mixed effects model includes some fixed and some random factors
  - In such models, the F tests may differ from the equivalent fixed effects model
- Mixed and Random effects not handled in basic R configuration



## Different types of model

- Is the productivity of different platforms different?
  - Obtain productivity measures from projects produced on the different platforms
  - Fixed effects
- Are two methods of measuring function points equivalent
  - Find 20 FP counters and 10 projects
    - Assign 2 counters to each project
    - Let each counter use both methods on their assigned project
    - Mixed effects
      - Project effect fixed
      - Method fixed
      - Person effect random
      - With-in person error term
      - Between method error term
  - Important to use the correct tests
    - Between method error term must be used to compare methods



# Impact of Model type on 2-way Factorial

| Mean    | Fixed Effects          | Random                                          | Mixed Model:                            |
|---------|------------------------|-------------------------------------------------|-----------------------------------------|
| Squares |                        | Effects                                         | A fixed, B                              |
|         |                        |                                                 | Random                                  |
| Α       | $\sigma^2 + nbk_A^2$   | $\sigma^2 + n\sigma_{AB}^2 + nb\sigma_A^2$      | $\sigma^2 + n\sigma_{\!AB}^2 + nbk_A^2$ |
| В       | $\sigma^2 + nak_B^2$   | $\sigma^2 + n\sigma_{AB}^2 + n\alpha\sigma_B^2$ | $\sigma^2 + na\sigma_B^2$               |
| AB      | $\sigma^2 + nk_{AB}^2$ | $\sigma^2 + n\sigma_{AB}^2$                     | $\sigma^2 + n\sigma_{AB}^2$             |
| Error   | $\sigma^2$             | $\sigma^2$                                      | $\sigma^2$                              |



#### SE Example

- Test Case Prioritization
- Design:
  - 18 techniques
    - 16 different test case prioritisation techniques
    - 2 control techniques
    - Ran experiments in groups of 4 techniques
  - 8 C programs
    - Generated 29 different versions with a random number of noninterfering faults
    - From available set of regression tests for program
      - Extracted 50 different test sets per program version for each method
  - Each experiment could generate
    - 4×8×29×50=46400 observations
    - Although not all combinations possible



## Example of ANOVA table

| Source        | SS      | df     | MS      | F     |
|---------------|---------|--------|---------|-------|
| Program       | 3472054 | 7      | 49615.6 | 1358  |
| Techn         | 97408   | 3      | 32469.2 | 88.9  |
| Program*Techn | 182322  | 21     | 8682.0  | 23.77 |
| Error         | 9490507 | 259086 | 365.22  |       |

• Is this analysis valid?



#### Model

- Each observation is based on
  - Program Fixed
  - Treatment Fixed
  - Interaction between Treatment and Program
  - Within each program the version used
    - Random effect
  - Within each version test case used for each method
    - Random effect

$$y_{ijkl} = p_i + T_j + (pT)_{ij} + v_{(ij)k} + \epsilon_{(ijk)l}$$



#### **ANOVA Problems**

- F-test requires the ratio two chi-squared variables
  - Variance of a Normal variable is chi-squared
  - Also assume the variances are equal for each group
- Affects of non normality and heteroscedastcity
  - Worse if sample sizes differ
- F test is not robust for heavy-tailed or skewed distributions



#### **MANOVA**

- Analysis of variance generalised to multiple outcome variables
- Consider analysing Duration, KDSI & Effort (after log transformation) within Mode
- Need to setup a data matrix containing only y variables
- Then use manova(y~Modecat)
  - Need library(MASS)



#### MANOVA Results

| Modecat | Log(Effort) | Log(Dur) | Log(AKDSI) |
|---------|-------------|----------|------------|
| Е       | 5.8093      | 2.9453   | 3.48624    |
| SD      | 4.7885      | 2.5510   | 3.3134     |
| 0       | 3.6552      | 2.4936   | 2.5862     |

- F=8.27 with 6 and 118 degrees of freedom
- p=1.744e-07
- R command summary.aov(fit)
  - Shows ANOVA for each variable separately
  - Only Effort significant at p<0.05</li>
- Require
  - Multivariate Normality
  - Homogeneity of variance-covariance matrices



#### Mahalanobis Distance

- With p×1 multivariate random vector x with
  - mean X
  - variance-covariance matrix \$
- Mahalobis  $d^2$  is distance between  $\mathbf{x}$  and squared  $\overline{\mathbf{x}}$ 
  - Chi-squared with p degrees of freedom
- Check normality by a qqplot of chi-squared

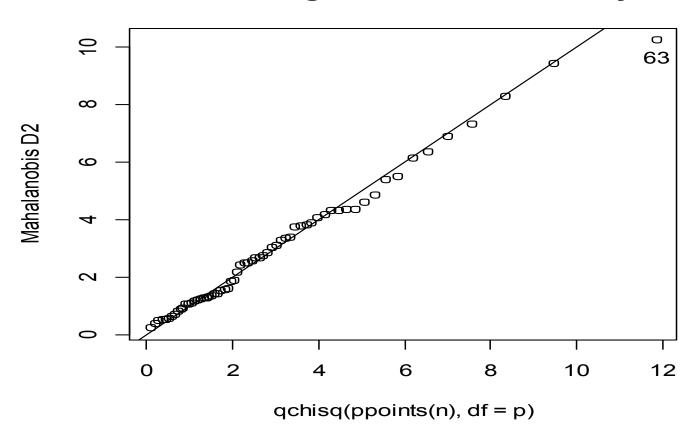
$$d^{2} = \left[1 + \left(\mathbf{x} - \overline{\mathbf{X}}\right)' \mathbf{S}^{-1} \left(\mathbf{x} - \overline{\mathbf{X}}\right)\right]$$

 Points should be close to lines with slope 1 and intercept 0



# qqplot of d<sup>2</sup>

#### **Assessing Multivariate Normality**





### Robust two-way analyses

- Trimmed means can be used in a two-way factorial design
- Can cope with lack of balance
  - Same results irrespective of order
- Needs a reasonably large number of units in each cell
  - Command is t2way(J,K,w,tr=p)
  - W is a list with J×K entries
  - Might need to use p=.1 rather than .2 if small numbers of observations per cell
- Recoded rvol categories so
  - Normal & Low counted as one category
  - High and Very high together counted as one category



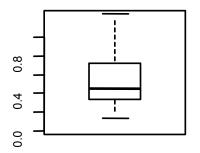
#### Constructing List Variable

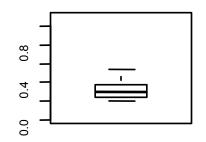
- w[[1]] contains the values for factor A level 1 and factor B level 1
- w[[2]] ... w[[J]] contain the values for factor A level 1 and factor B levels 2 to J
- w[[J+1]] ...w[[2J]] contains values for factor A level 2 and factor B levels 1...J
- w[[K(J-1) +1]]...w[[KJ]] contains values for factor A level K and factor B levels 1 to J

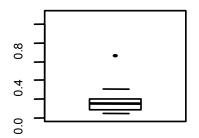


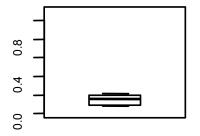
# Productivity per Cell

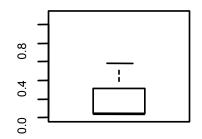
| Rvolcat | Mode        |            |             |  |
|---------|-------------|------------|-------------|--|
|         | Organic     | Semi-      | Embedded    |  |
|         |             | detached   |             |  |
| N or L  | 0.5378 (17) | 0.3137 (9) | 0.1871 (12) |  |
| H or VH | 0.1507 (6)  | 0.2 231(3) | 0.0866 (16) |  |

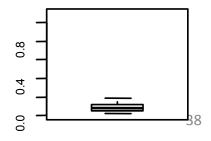












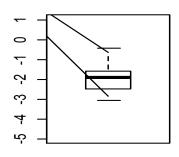


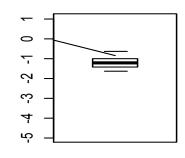
#### Trimmed means results

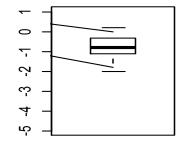
- Effect due to Requirement Volatility significant (p=0.05)
- Effect due to Mode significant (p=0.001)
- Interaction significant (p=0.014)
- Different results if log(Productivity)
  - Mode (p=0.002), Rvol(p=0.031), Interaction (p=0.27)
- Similar results if log(Productivity) & trim=0
  - Mode (p=0.002), Rvol (p=0.029), Interaction (p=0.383)

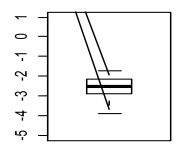


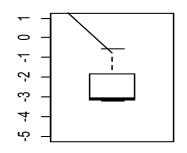
# Log(Productivity)

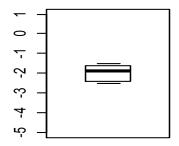














### Non-Parametric Analysis

- Akritas, Arnold & Brunner method
  - Works for unbalanced Factorial design
    - Same results irrespective of order
  - Function: bdm2way(J,K,x)
  - J=number of levels in Factor A
  - K= number of levels in factor B
- Based on w as a list variable (same as for trimmed means)
- Reports the relative effect size



#### COCOMO Example

- Productivity for factors
  - Requirements volatility (two levels)
  - Mode category E,SD,O
- Requirements volatility effects (p=0.059)
- Mode effects (p=0.205)
- Interaction effects (p=0.624)

| Relative effect         | Mode     |               |         |  |
|-------------------------|----------|---------------|---------|--|
| Requirements Volatility | Embedded | Semi-Detached | Organic |  |
| Normal                  | 0.4140   | 0.6693        | 0.7988  |  |
| High                    | 0.2202   | 0.3360        | 0.3995  |  |



#### Additional facilities

- Trimmed means
  - Available for three-way designs
  - Randomised effects
  - Linear contrasts for complex designs
  - MANOVA
  - Not all techniques available in standard R configuration
- With a good transformation available
  - Can transform data and use tr=0
    - For facilities not available in standard R



#### Conclusions

- ANOVA can easily get too complex to understand
  - Always choose the simplest design possible
  - Preferably one that is fully specified in a statistical text book
  - Main problems are mixed designs with multiple levels and error terms
- ANOVA is reliant on normal distributions but
  - Possible to use trimmed means for Robust analyses
    - However, may be better to transform data
  - Non-parametric methods for designs as complex as two-way factorial designs available in WRS library
    - Allow for unbalanced designs
- ANCOVA covered by regression analysis
- MANOVA facilities available
  - Standard R facilities
  - Trimmed means