
SEMFIX: PROGRAM REPAIR VIA
SEMANTIC ANALYSIS

H.D.T. Nguyen, Dawei Qi, Abhik Roychoudhury
National University of Singapore, &
Satish Chandra
Samsung

CREST W
orkshop, Jan 2014

1

Talk given at 30th CREST Workshop, London, Jan 2014.

WHAT WE HAVE BEEN DISCUSSING

Precise debugging is laborious.

Specification based repair,
Genetic Programming,
…

CREST W
orkshop, Jan 2014

Symbolic execution of test cases to extract specifications

2

THIS WORK …

Suspicions !! – statistical fault localization.

Infer intended meaning of suspicious statements
- Symbolic execution (SE)

Solve constraint from SE to create fixed statement
- Program synthesis

Test–suite Failing tests
CREST W

orkshop, Jan 2014

3

0. THE PROBLEM
1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed
output

Expected
Output

Result

1 0 100 0 0 pass
1 11 110 0 1 fail
0 100 50 1 1 pass
1 -20 60 0 1 fail
0 0 10 0 0 pass

CREST W
orkshop, Jan 2014

4

1. FIND A SUSPECT
1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

Line Score Rank
 4 0.75 1
 8 0.6 2
 3 0.5 3
 6 0.5 3
 5 0 5
 7 0 5

CREST W
orkshop, Jan 2014

5

2 WHAT IT SHOULD HAVE BEEN
1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_sep Observed

output
Expected
Output

Result

1 11 110 0 1 fail

inhibit = 1, up_sep = 11, down_sep = 110
bias = X, path condition = true

inhibit = 1, up_sep = 11, down_sep = 110
bias = X, path condition = X> 110

inhibit = 1, up_sep = 11, down_sep = 110
bias = X, path condition = X ≤ 110

Line 4

Line 7 Line 8

CREST W
orkshop, Jan 2014

6

2. WHAT IT SHOULD HAVE BEEN

1 int is_upward(int inhibit, int up_sep, int
down_sep){

2 int bias;
3 if (inhibit)
4 bias = f(inhibit, up_sep, down_sep)
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

Inhibit
== 1

up_sep
== 11

down_sep
== 110

Symbolic Execution

f(1,11,110) > 110

CREST W
orkshop, Jan 2014

7

3. FIX THE SUSPECT
 Accumulated constraints

 f(1,11, 110) > 110 ∧
 f(1,0,100) ≤ 100 ∧
 …

 Find a f satisfying this constraint
 By fixing the set of operators appearing in f

 Candidate methods
 Search over the space of expressions
 Program synthesis with fixed set of operators

 More efficient!!

 Generated fix
 f(inhibit,up_sep,down_sep) = up_sep + 100

CREST W
orkshop, Jan 2014

8

TO RECAPITULATE
 Ranked Bug report

 Hypothesize the error causes – suspect
 Symbolic execution

 Specification of the suspicious statement
 Input-output requirements from each test
 Repair constraint

 Program synthesis
 Decide operators which can appear in the fix
 Generate a fix by solving repair constraint.

CREST W
orkshop, Jan 2014

9

PRODUCING RANKED BUG REPORT
 We use the Tarantula toolkit.
 Given a test-suite T

 fail(s) ≡ # of failing executions in which s occurs
 pass(s) ≡ # of passing executions in which s occurs
 allfail ≡ Total # of failing executions
 allpass ≡ Total # of passing executions

 allfail + allpass = |T|

 Can also use other metric like Ochiai.

Score(s) =

fail(s)
allfail

fail(s)
allfail

pass(s)
allpass +

CREST W
orkshop, Jan 2014

10

USAGE OF RANKED BUG REPORT

Buggy
Program

Test Suite

-Investigate what this
statement should be.

- Generate a fixed
statement

Fixed
Program

YES

NO

CREST W
orkshop, Jan 2014

11

TO RECAPITULATE
 Ranked Bug report

 Hypothesize the error causes – suspect
 Symbolic execution

 Specification of the suspicious statement
 Input-output requirements from each test

 Repair constraint

 Program synthesis
 Decide operators which can appear in the fix
 Generate a fixed statement by solving repair

constraint.

CREST W
orkshop, Jan 2014

12

WHAT IT SHOULD HAVE BEEN

Buggy Program

…

var = a + b – c; x

Concrete test input

Concrete Execution

Symbolic Execution with x as the
only unknown

Path conditions,
Output Expressions

CREST W
orkshop, Jan 2014

13

EXAMPLE

14

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = f(inhibit, up_sep, down_sep) // X
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

Inhibit == 1 up_sep == 11 down_sep == 110

Symbolic Execution

∨ (pcj ∧ outj == expected_out(t))

∧

f(t) == X

j ∈ Paths

Repair constraint

((X >110 ∧ 1 ==1)
 ∨ (X ≤ 110 ∧ 0 == 1)
) ∧
 f(1,11,110) == X

CREST W
orkshop, Jan 2014

14

OVERALL REPAIR CONSTRAINT

…

var = … ;

t1 t2

Cons1 Cons2

Repair Constraint = Cons1 ∧ Cons2

Repair constraint = ∧ Consi
 TS

1. TS = failing tests;
2. Repair based on TS // guaranteed to pass TS
3. New = newly failed tests due to repair
4. If (New == φ) exit // Got your repair
5. else { TS = TS ∪ New;
6. Go to 2 }

CREST W
orkshop, Jan 2014

15

TO RECAPITULATE
 Ranked Bug report

 Hypothesize the error causes – suspect
 Symbolic execution

 Specification of the suspicious statement
 Input-output requirements from each test
 Repair constraint

 Program synthesis
 Decide operators which can appear in the fix
 Generate a fix by solving repair constraint.

CREST W
orkshop, Jan 2014

16

WHY PROGRAM SYNTHESIS
 Instead of solving

 Select primitive components to be used by the synthesized

program based on complexity
 Look for a program that uses only these primitive components

and satisfy the repair constraint
 Where to place each component?

 What are the parameters?

int tmp = down_sep -1;
return up_sep + tmp;

int tmp=down_sep + 1;
return tmp- inhibit;

int tmp = down_sep -1;
return tmp + inhibit ;

int tmp = down_sep -1;
return tmp + inhibit ;

+
+

inhibit up_sep

CREST W
orkshop, Jan 2014

Repair Constraint:
f(1,11,110) > 110 ∧ f(1,0,100) ≤ 100

∧ f(1,-20,60) > 60

17

LOCATION VARIABLES
 Define location variables for each component
 Constraint on location variables solved by SMT.

 Well-formed e.g. defined before being used
 Output constraint from each test (repair constraint)
 Meaning of the components
 Lines determine the value Lx == Ly ⇒ x == y

 Once locations are found, program is constructed.

CREST W
orkshop, Jan 2014 Components = {+}

Lin == 0, Lout == 1, Lout+ == 1, Lin1+ == 0, Lin2+ == 0

0 r0 = input;
1 r = r0 + r0;
2 return r;

18

EVALUATION
 Results from

 SIR and GNU CoreUtils
 Tools

 Ranked Bug report (Tarantula)
 Symbolic execution (KLEE)
 Program synthesis (Own tool + Z3)

CREST W
orkshop, Jan 2014

19

SUBJECTS USED

20

CREST W
orkshop, Jan 2014

Subject LoC # Versions Description
TCAS 135 41 Air Traffic Control
Schedule 304 9 Process scheduler
Schedule2 262 9 Process scheduler
Replace 518 29 Text processing
Grep 9366 2 Text search engine

SIR programs

Subject LoC
mknod 183
mkdir 159
mkfifo 107
cp 2272

GNU CoreUtils

SUCCESS OF REPAIR (SIR)

0
5

10
15
20
25
30
35
40
45

10 20 30 40 50

Total
Semfix
GenProg

Number of tests

of

 p
ro

gr
am

s
re

pa
ir

ed

TCAS

Overall 90 programs from SIR
SemFix repaired 48/90, GenProg repaired 16/90 for 50 tests.

GenProg running time is >3 times of SemFix

CREST W
orkshop, Jan 2014

Time bound = 4 mins.

21

TYPE OF BUGS (SIR)

Total SemFix GenProg
Constant 14 10 3
Arithmetic 14 6 0
Comparison 16 12 5
Logic 10 10 3
Code
Missing

27 5 3

Redundant
Code

9 5 2

ALL 90 48 16

CREST W
orkshop, Jan 2014

22

GNU COREUTILS
 9 buggy programs where bug could be reproduced.

 Taken from paper on KLEE, OSDI 2008.

 SemFix succeeded in 4/9 [mkdir, cp, …]
 Average time = 3.8 mins.
 Average time = 6 mins. [GenProg]

 All GenProg experiments using configuration from
ICSE 2012 paper by Le Goues et al.
 Pop size, # generations, …
 Other configurations may lead to success for GP, but then

we need a systematic method to determine the
configurations.

CREST W
orkshop, Jan 2014

23

EXPRESSION ENUMERATION
 Enumerate all expressions over a given set of

components (i.e. operators)
 Enforce axioms of the operators
 If candidate repair contains a constant, solve using

SMT

 Program synthesis turns out to be faster.

CREST W
orkshop, Jan 2014

Subject TCAS Schedul
e

Schedule
2

replace grep

Ratio 6.9 2.8 2.5 1.36 2.2

Enumeration also timed out > 20 minutes. These are not even
included.

24

REPAIRS THAT WERE NOT DONE
 Multiple line fix

 Complex code to be inserted
 Same wrong branch condition

 if (c){ … } … if (c) { … }

 Updates to multiple variables
 x = e1; … ; y = e2; …

 Floating point bugs
 n = (int) (count*ratio + 1.1);

 Can be overcome, limitation of KLEE/solvers

 Other problems, e.g. wrong function call
 current_job = (struct process *)0;
get_current();

CREST W
orkshop, Jan 2014

25

EXAMPLE FIXES
 enabled = High_Confidence &&
(Own_Tracked_Alt_Rate <= OLEV); /*&&
(Cur_Vertical_Sep > MAXALTDIFF);missing
code*/

 Synthesizes missing code

 tmp = Up_Separation;

 Synthesizes
 tmp = ((OtherCapability < Alt_Layer_Value)?

 Two_of_Three_Reports_Valid:

 Cur_Vertical_Sep

);

CREST W
orkshop, Jan 2014

26

IN SUMMARY
 Repair exploiting symbolic execution

 Avoids enumeration over a space of expressions from
a pre-fixed template language.

 Repair via constraint solving
 Synthesize rather than lifting fixes from elsewhere.

 Repair without formal specifications
 Pass given test cases by a constraint solver

answering “What it should have been?”
 Single line repair – need to do more …

 Try other background debugging tools / metrics.
 Synthesize guards to relate different fragments to fix.

CREST W
orkshop, Jan 2014

27

FOR DISCUSSION - ONGOING

28

CREST W
orkshop, Jan 2014

Failing tests Debugging DSE
Synthesis

Failing tests
MaxSMT solver

Minimized
Mutations
for
Repair

FOR DISCUSSION - ONGOING

29

CREST W
orkshop, Jan 2014

Passing
Version

Failing
Version

Evolve Regression Repair

Research Questions
Can we use the changes as anchor to direct repair?
Is it possible to employ “mutations” at the change sites?

To investigate: it may sometimes be easier to make
multiple simple repairs, rather than one-line complex
repair, a-la SEMFIX.

	SemFix: Program Repair via Semantic Analysis
	What we have been discussing
	This work …
	0. The problem
	1. Find a Suspect
	2 What it should have been
	2. What it should have been
	3. Fix the suspect
	To Recapitulate
	Producing Ranked Bug report
	Usage of Ranked Bug report
	To Recapitulate
	What it should have been
	Example
	Overall Repair Constraint
	To Recapitulate
	Why Program synthesis
	Location Variables
	Evaluation
	Subjects Used
	Success of repair (SIR)
	Type of Bugs (SIR)
	GNU CoreUtils
	Expression enumeration
	Repairs that were not done
	Example fixes
	In summary
	For Discussion - Ongoing
	For Discussion - Ongoing

