
FIELD FAILURE REPRODUCTION
USING SYMBOLIC EXECUTION AND

GENETIC PROGRAMMING

Partially supported by: NSF, IBM, and MSR

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology

Partially supported by: NSF, IBM, and MSR

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology

DSE SBST

FIELD FAILURE REPRODUCTION
USING SYMBOLIC EXECUTION AND

GENETIC PROGRAMMING

FIELD FAILURE REPRODUCTION
USING SYMBOLIC EXECUTION AND

GENETIC PROGRAMMING

Partially supported by: NSF, IBM, and MSR

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology

DSE SBST

FIELD FAILURE REPRODUCTION
USING SYMBOLIC EXECUTION AND

GENETIC PROGRAMMING

Partially supported by: NSF, IBM, and MSR

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology

Field failures are
unavoidable!

DSE SBST

FIELD FAILURE REPRODUCTION
USING SYMBOLIC EXECUTION AND

GENETIC PROGRAMMING

Partially supported by: NSF, IBM, and MSR

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology

Field failures are
unavoidable!

DSE SBST

TYPICAL DEBUGGING PROCESS

Bug Repository

Very hard to
(1) reproduce
(2) debug

TYPICAL DEBUGGING PROCESS

Bug Repository

Recent survey of
Apache, Eclipse, and Mozilla developers:

Information on how to reproduce field failures is the most
valuable, and difficult to obtain, piece of information for
investigating such failures.
[Zimmermann10]

Very hard to
(1) reproduce
(2) debug

TYPICAL DEBUGGING PROCESS

Bug Repository

Recent survey of
Apache, Eclipse, and Mozilla developers:

Information on how to reproduce field failures is the most
valuable, and difficult to obtain, piece of information for
investigating such failures.
[Zimmermann10]

Very hard to
(1) reproduce
(2) debug

OVERARCHING GOAL: help developers
(1) investigate field failures,

(2) understand their causes, and
(3) eliminate such causes.

OUR WORK SO FAR

Mimicking field failures
[icse 2012, icst 2014]

Recording and replaying executions
[icsm 2007, icse 2007]

Input anonymization
[icse 2011]

Input minimization
[woda 2006, icse 2007]

✘

Explaining field failures
[issta 2013, TR]

MIMICKING FIELD FAILURES
User run (R) Mimicked run (R’)

•F’ is analogous to F
•R’ is an actual execution

F F’in the field in house

MIMICKING FIELD FAILURES
User run (R) Relevant events

(breadcrumbs)
Mimicked run (R’)

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

BUGREDUX/SBFR

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

DSE SBST

Crash report
(execution data)

Synthesized
Executions

BUGREDUXJoint work with Wei Jin

Crash report
(execution data)

BUGREDUX

Test Input

Joint work with Wei Jin

Crash report
(execution data)

Oracle

Candidate
input

Input
generator

BUGREDUX

• Execution data

• Input generation technique

• Point of failure (POF)
• Failure call stack
• Call sequence
• Complete trace

• Guided symbolic execution

Joint work with Wei Jin

Test Input

Input
 icfg for P
 goals (list of code locations)
Output
 If (candidate input)

Main algorithm
init; currGoal = first(goals)
repeat
 currState = SelNextState()
 if (!currState) backtrack or fail
 if (currState.cl == currGoal)
 if (currGoal == last(goals))
 return solve(currState.pc)
 else
 currGoal = next(goals)
 currState.goal = currGoal
 symbolicallyExec(currState)

SelNextState
minDis = ∞
retState = null

foreach state in statesSet
 if (state.goal = currGoal)
 if (state.cl can reach currGoal)
 d = |shortest path state.cl, currGoal|
 if d < minDis
 minDis = d
 retState = state
return retState

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}

Input
 icfg for P
 goals (list of code locations)
Output
 If (candidate input)

Main algorithm
init; currGoal = first(goals)
repeat
 currState = SelNextState()
 if (!currState) backtrack or fail
 if (currState.cl == currGoal)
 if (currGoal == last(goals))
 return solve(currState.pc)
 else
 currGoal = next(goals)
 currState.goal = currGoal
 symbolicallyExec(currState)

SelNextState
minDis = ∞
retState = null

foreach state in statesSet
 if (state.goal = currGoal)
 if (state.cl can reach currGoal)
 d = |shortest path state.cl, currGoal|
 if d < minDis
 minDis = d
 retState = state
return retState

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}

Optimizations/Heuristics

Dynamic tainting to reduce the symbolic input space

Program analysis information to prune the search space

Some randomness in the shortest path computation

BUGREDUX EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1

BUGREDUX EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1

None of these faults can be discovered by

a vanilla KLEE with a timeout of 72 hours

BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1
sed #2
grep

gzip #1
gzip #2

ncompress
polymorph

aeon
rsync
glftpd
htget
socat
tipxd
aspell
xmail
exim

One of three outcomes:
✘: fail
～: synthesize
✔: (synthesize and) mimic

BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synth.: 9/16
Mimic: 6/16

Synth.: 10/16
Mimic: 6/16

Synth.: 16/16
Mimic: 16/16

Synth.: 2/16
Mimic: 2/16

BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Observations:

• Faults can be distant from

the failure points:

=> POFs and call stacks

unlikely to help
• More information is not

always better
• Symbolic execution can

be a limiting factor

Synth.: 9/16
Mimic: 6/16

Synth.: 10/16
Mimic: 6/16

Synth.: 16/16
Mimic: 16/16

Synth.: 2/16
Mimic: 2/16

BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Observations:

• Faults can be distant from

the failure points:

=> POFs and call stacks

unlikely to help
• More information is not

always better
• Symbolic execution can

be a limiting factor

Symbolic execution can

be ineffective for

• programs with highly

structured inputs

• programs that interact

with external libraries

• large complex programs

in general

Synth.: 9/16
Mimic: 6/16

Synth.: 10/16
Mimic: 6/16

Synth.: 16/16
Mimic: 16/16

Synth.: 2/16
Mimic: 2/16

SBFRJoint work with

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data) • Execution data

• Input generation technique

• Call sequence

• Genetic Programming

SBFRJoint work with

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::=
 |λ

Joint work with

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::=
 |λ

Derivation
Tree

Genetic
Programming

SBFR

Sentence derivation from the grammar:
Random application of grammar rules
• Uniform
• 80/20
• Stochastic (from a corpus)

Joint work with

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::=
 |λ

Derivation
Tree

Genetic
Programming

SBFR

Sentence derivation from the grammar:
Random application of grammar rules
• Uniform
• 80/20
• Stochastic (from a corpus)

Evolution: Fitness function:
 Distance b/w execution traces
 (candidate–actual failure)

Joint work with

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::=
 |λ

Derivation
Tree

Genetic
Programming

✔ ︎

Stopping criterion:
• Success
• Ic reaches the point of failure
• The program fails “in the same way”
• Search budget exhausted

SBFR

SBFR EVALUATION – FAILURES CONSIDERED

Name Language Size(KLOC) # Productions # Faults

calc Java 2 38 2

bc C 12 80 1

MSDL Java 13 140 5

PicoC C 11 194 1

Lua C 17 106 2

SBFR EVALUATION – FAILURES CONSIDERED

Name Language Size(KLOC) # Productions # Faults

calc Java 2 38 2

bc C 12 80 1

MSDL Java 13 140 5

PicoC C 11 194 1

Lua C 17 106 2

BugRedux was unable to reproduce any of

these failures with a timeout of 72 hours

SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.0
calc bug 2 0.0

bc 0.0
MSDL bug 1 0.0
MSDL bug 2 0.0
MSDL bug 3 1.0
MSDL bug 4 0.0
MSDL bug 5 0.0

PicoC 0.1
Lua bug 1 0.0
Lua bug 2 0.0

•Parameters:
•Population: 500
•Budget: 10,000 unique

fitness evaluations
•Performed 10 runs
•Measured failure

reproduction probability
•Used both 80/20 and

stochastic derivations

SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0

SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0

SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0

Example: failure in bc

segmentation fault triggered by an instruction

sequence that allocates at least 32 arrays and

declares a number of variables higher than

the number of allocated arrays

SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0

Example: failure in bc

segmentation fault triggered by an instruction

sequence that allocates at least 32 arrays and

declares a number of variables higher than

the number of allocated arrays

Observations:

• Search-based approaches can be effective in

cases that symbolic execution cannot handle

• Stochastic grammars are effective

• SBST more scalable, but less directed

=> SBST and DSE are complementary,

rather than alternative techniques

• Relevant execution data identification
• Which types?
• Which specific ones?

• Failure explanation
• Reproduction is not enough
• Can DSE and SBST help?

• Use of different input generation techniques
• Grammar-based symbolic execution
• Backward symbolic analysis?
• Other SBST approaches?
• SBST targeted at different kinds of programs?
• Combination of techniques

FUTURE WORK / FOOD
FOR THOUGHTS

