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OVERARCHING GOAL: help developers 
(1) investigate field failures, 

(2) understand their causes, and
(3) eliminate such causes.



OUR WORK SO FAR

Mimicking field failures 
[icse 2012, icst 2014]

Recording and replaying executions
[icsm 2007, icse 2007]

Input anonymization 
[icse 2011]

Input minimization 
[woda 2006, icse 2007]

✘

Explaining field failures 
[issta 2013, TR]



MIMICKING FIELD FAILURES
User run (R) Mimicked run (R’)

•F’ is analogous to F
•R’ is an actual execution

F F’in the field in house



MIMICKING FIELD FAILURES
User run (R) Relevant events

(breadcrumbs)
Mimicked run (R’)



OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field



BUGREDUX/SBFR

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

DSE SBST
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Crash report
(execution data)

Oracle

Candidate
input

Input 
generator 

BUGREDUX

• Execution data

• Input generation technique

• Point of failure (POF)
• Failure call stack
• Call sequence
• Complete trace

• Guided symbolic execution

Joint work with Wei Jin

Test Input



Input
  icfg for P
  goals (list of code locations)
Output
  If (candidate input)

Main algorithm
init; currGoal = first(goals)
repeat
  currState = SelNextState()
  if (!currState) backtrack or fail
  if (currState.cl == currGoal)
    if (currGoal == last(goals))
      return solve(currState.pc)
    else
      currGoal = next(goals)
      currState.goal = currGoal
  symbolicallyExec(currState)

SelNextState
minDis = ∞
retState = null

foreach state in statesSet
  if (state.goal = currGoal)
    if (state.cl can reach currGoal)
      d = |shortest path state.cl, currGoal|
      if d < minDis
        minDis = d
        retState = state
return retState

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}
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foreach state in statesSet
  if (state.goal = currGoal)
    if (state.cl can reach currGoal)
      d = |shortest path state.cl, currGoal|
      if d < minDis
        minDis = d
        retState = state
return retState

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}

Optimizations/Heuristics

Dynamic tainting to reduce the symbolic input space

Program analysis information to prune the search space

Some randomness in the shortest path computation



BUGREDUX EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1



BUGREDUX EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1

None of these faults can be discovered by

a vanilla KLEE with a timeout of 72 hours



BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1
sed #2
grep

gzip #1
gzip #2

ncompress
polymorph

aeon
rsync
glftpd
htget
socat
tipxd
aspell
xmail
exim

One of three outcomes:
✘: fail
～: synthesize
✔: (synthesize and) mimic 



BUGREDUX EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl. Trace
sed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synth.: 9/16
Mimic: 6/16

Synth.: 10/16
Mimic: 6/16

Synth.: 16/16
Mimic: 16/16

Synth.: 2/16
Mimic: 2/16
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Observations:

• Faults can be distant from 

the failure points:

=> POFs and call stacks 

unlikely to help
• More information is not 

always better
• Symbolic execution can 

be a limiting factor
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Observations:

• Faults can be distant from 

the failure points:

=> POFs and call stacks 

unlikely to help
• More information is not 

always better
• Symbolic execution can 

be a limiting factor

Symbolic execution can 

be ineffective for

• programs with highly 

structured inputs 

• programs that interact 

with external libraries

• large complex programs 

in general

Synth.: 9/16
Mimic: 6/16

Synth.: 10/16
Mimic: 6/16

Synth.: 16/16
Mimic: 16/16

Synth.: 2/16
Mimic: 2/16



SBFRJoint work with 

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data) • Execution data

• Input generation technique

• Call sequence

• Genetic Programming
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(execution data)
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<b> |λ 

Derivation
Tree

Genetic
Programming

SBFR

Sentence derivation from the grammar:
Random application of grammar rules
• Uniform
• 80/20
• Stochastic (from a corpus)



Joint work with 

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::= 
<b> |λ 

Derivation
Tree

Genetic
Programming

SBFR

Sentence derivation from the grammar:
Random application of grammar rules
• Uniform
• 80/20
• Stochastic (from a corpus)

Evolution: Fitness function:
  Distance b/w execution traces
  (candidate–actual failure)



Joint work with 

Kifetew, Jin, Tiella, Tonella

Test InputCrash report
(execution data)

Grammar

<a> ::= 
<b> |λ 

Derivation
Tree

Genetic
Programming

✔ ︎

Stopping criterion:
• Success
• Ic reaches the point of failure
• The program fails “in the same way”
• Search budget exhausted

SBFR



SBFR EVALUATION – FAILURES CONSIDERED

Name Language Size(KLOC) # Productions # Faults

calc Java 2 38 2

bc C 12 80 1

MSDL Java 13 140 5

PicoC C 11 194 1

Lua C 17 106 2



SBFR EVALUATION – FAILURES CONSIDERED

Name Language Size(KLOC) # Productions # Faults

calc Java 2 38 2

bc C 12 80 1

MSDL Java 13 140 5

PicoC C 11 194 1

Lua C 17 106 2

BugRedux was unable to reproduce any of 

these failures with a timeout of 72 hours



SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.0
calc bug 2 0.0

bc 0.0
MSDL bug 1 0.0
MSDL bug 2 0.0
MSDL bug 3 1.0
MSDL bug 4 0.0
MSDL bug 5 0.0

PicoC 0.1
Lua bug 1 0.0
Lua bug 2 0.0

•Parameters:
•Population: 500
•Budget: 10,000 unique 

fitness evaluations
•Performed 10 runs
•Measured failure 

reproduction probability
•Used both 80/20 and 

stochastic derivations
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bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0



SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0



SBFR EVALUATION – RESULTS
Name FRP (SBFR) FRP (Random)

calc bug 1 0.6 0.0
calc bug 2 0.8 0.0

bc 1.0 0.0
MSDL bug 1 1.0 0.0
MSDL bug 2 1.0 0.0
MSDL bug 3 1.0 1.0
MSDL bug 4 1.0 0.0
MSDL bug 5 1.0 0.0

PicoC 0.8 0.1
Lua bug 1 0.0 0.0
Lua bug 2 0.5 0.0

Example: failure in bc

segmentation fault triggered by an instruction 

sequence that allocates at least 32 arrays and 

declares a number of variables higher than 

the number of allocated arrays
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Example: failure in bc

segmentation fault triggered by an instruction 

sequence that allocates at least 32 arrays and 

declares a number of variables higher than 

the number of allocated arrays

Observations:

• Search-based approaches can be effective in 

cases that symbolic execution cannot handle

• Stochastic grammars are effective

• SBST more scalable, but less directed

=> SBST and DSE are complementary, 

rather than alternative techniques



• Relevant execution data identification
• Which types?
• Which specific ones?

• Failure explanation
• Reproduction is not enough
• Can DSE and SBST help?

• Use of different input generation techniques
• Grammar-based symbolic execution 
• Backward symbolic analysis?
• Other SBST approaches?
• SBST targeted at different kinds of programs?
• Combination of techniques

FUTURE WORK / FOOD 
FOR THOUGHTS


