Some Theoretical Results in
(Search-Based) Software Testing

Dr.Andrea Arcuri
arcuri@simula.no

Why Theory!?

® Counterintuitive example of scalability

What works in empirical studies might not scale to larger instances

® Some general results

Valid for all instances, all sizes

® Explain why

In this talk, focus on the
results, not on the math
behind them...

A Scalability Example

Runtime Analysis

® Expected (average) number of fitness
evaluations before global optimum

® Function of the problem size

eg, size of array in sorting algorithm

(Very) Simple Example

Runtime

® vintegers as input
® Each integer is bounded in [0,n]

® For algorithm A, runtime will be r(A,v,n)

Considered Algorithms

® Random Search (RS)

® Two variants of Hill Climbing, with random
restarts when local optima

® HCint: +-1 on integer values
e HCbit: bit flipping

® Fitness: branch distance

Example

n==15 (range [0,15])
v==1 (only | input)
x==8, binary(8)=1000

Let the (random) starting point be 0

0(0000)

Runtime when v==]

r(RS,1,n) = G(n)
r(HCint, 1,n) = O(n)
r(HCbit, 1,n) = O(log(n)*)

HCint same asymptotic runtime as RS

But for fixed n and large v...

® r(RS,v,n=c) = e@(v)

¢ r(HCint,v,n=c) = O(*)
e r(HCbit,l,n=c) = OG*")

® RS and HCbit have exponential runtime

Fitness Evaluations

2e+05 4e+05 6e+05 B8e+05 1e+06

0e+00

|

RS

0 HCO
& HCH

Number of Variables

For small v, HCint is not
better than RS, and
HCbit is faster

But HCint is the only
one that scales, ie no
exponential runtime

What'’s going on???

® Bit representation is faster, but has local optima

binary(7)=0111 is local optimum for target binary(8)=1000

® When local optimum, HC needs restart

® Number of restarts exponential in v

so negligible for low values of v

Some General Results

Combinatorial Testing (CT)

® [variables having v possible values

® tis the target combination strength to cover

eg t=2 consider all possible pairs

® N:test cases covering all t-wise combinations
® Goal: minimize N while covering all t combinations

® Assume no constraints among variables

all combinations are valid

CT Tools

® Many CT tools exist

® (Usually) scalability problems

eg when k is in the order of hundreds/thousands

can take hours, days, or simply crash...

® Why not generating the N test cases at
random???

Is Random really bad?

® Random found more bugs than CT

® |.Bach and P.Schroeder. Pairwise testing:
A best practice that isn’t. In Proceedings
of 22nd Pacific Northwest Software
Quality Conference, pages 180—196,2004.

Theoretical Analysis

® For any k,vand t, given the same number N as CT,
Random has at least 63% of finding t-wise bug

® Probability goes to 100% for increasing k

® Example: v=4 and k=100 probability is at least 94%!!!

Implications of Theory

Confirms and explains Bach&Schroeder’s empirical
results.

For large k, Random as effective as CT for t

If automated oracle: can generate/run more than N
given same time

More tests: higher fault detection for greater t

Sorry... going to show some
theory... how to prove a 63%
lower bound!?

First, calculate probability p_f of random test
finding a failure (if any exist)

1 1
Pf = > -
Hz'eFf vi [Tz vi

Which is one over all possible combinations of t
variables

Example: t=2 and v=4, p_fis at leastl/4*4 = 1/16

Second, calculate probability of at least one
test case fails out of N

Pr=1—(1—-pN >1 (1 !)\
r=1—-(1—-ps)" 21—-(1——= :
[1

i=1 Vi

Which is | minus probability of none failing.
Probability of none failing is probability of
pass (|-p_f) repeated N times

Now, thanks to the following inequality, we
conclude the proof. Note: trivial lower bound for
N is [I;_ v ie, all possible combinations of t
variables

N
(1 + E)m < ew . Pt. Z]. — (]. I—Is:l Ui)
L [Tiq v
>1—(1: :1)

References

® Andrea Arcuri. Theoretical Analysis of Local Search in
Software Testing. In Symposium on Stochastic Algorithms,

Foundations and Applications (SAGA), pp. 156-168, Japan,
20009.

® Andrea Arcuri and Lionel Briand. Formal Analysis of the
Probability of Interaction Fault Detection Using
Random Testing. [EEE Transactions on Software
Engineering, vol. 38, issue 5, pp. 1088-1099,2012.

Conclusion

® Theory can tell you why things happen in a particular
way

® Can answer scalability questions

® Just another tool to address research questions

Theory and empirical studies should go together hand-in-hand

® Might be difficult to carry out on real-world
problems, if possible at all

see Theory track at GECCO

