
Some Theoretical Results in
(Search-Based) Software Testing

Dr. Andrea Arcuri	

arcuri@simula.no

Why Theory?

• Counterintuitive example of scalability	

• What works in empirical studies might not scale to larger instances	

• Some general results	

• Valid for all instances, all sizes	

• Explain why

In this talk, focus on the
results, not on the math
behind them...

A Scalability Example

Runtime Analysis

• Expected (average) number of fitness
evaluations before global optimum	

• Function of the problem size	

• eg, size of array in sorting algorithm

(Very) Simple Example

public void foo(int x1, int x2, int x3, ...){	

 	

 if(x1==k1 && x2==k2 && x3==k3 && ...)	

 //TARGET	

}

Runtime

• v integers as input	

• Each integer is bounded in [0,n]	

• For algorithm A, runtime will be r(A,v,n)

Considered Algorithms

• Random Search (RS)	

• Two variants of Hill Climbing, with random
restarts when local optima	

• HCint: +-1 on integer values	

• HCbit: bit flipping	

• Fitness: branch distance

Example

n==15 (range [0,15])	

v==1 (only 1 input)	

x==8 , binary(8)=1000	

Let the (random) starting point be 0	

00

1-1

2

HCint

8

...

HCbit
0(0000)

1(0001)2(0010)4(0100)8(1000)

Runtime when v==1

• r(RS,1,n) = 	

• r(HCint,1,n) = 	

• r(HCbit,1,n) = 	

• HCint same asymptotic runtime as RS

But for fixed n and large v...

• r(RS,v,n=c) = 	

• r(HCint,v,n=c) = 	

• r(HCbit,1,n=c) = 	

• RS and HCbit have exponential runtime

For small v, HCint is not
better than RS, and
HCbit is faster	

!

But HCint is the only
one that scales, ie no
exponential runtime

What’s going on???

• Bit representation is faster, but has local optima	

• binary(7)=0111 is local optimum for target binary(8)=1000	

• When local optimum, HC needs restart	

• Number of restarts exponential in v	

• so negligible for low values of v

Some General Results

Combinatorial Testing (CT)
• k variables having v possible values	

• t is the target combination strength to cover	

• eg t=2 consider all possible pairs	

• N: test cases covering all t-wise combinations	

• Goal: minimize N while covering all t combinations	

• Assume no constraints among variables	

• all combinations are valid

CT Tools

• Many CT tools exist	

• (Usually) scalability problems	

• eg when k is in the order of hundreds/thousands 	

• can take hours, days, or simply crash...	

• Why not generating the N test cases at
random???

Is Random really bad?

• Random found more bugs than CT	

• J. Bach and P. Schroeder. Pairwise testing:
A best practice that isn’t. In Proceedings
of 22nd Pacific Northwest Software
Quality Conference, pages 180–196, 2004.

Theoretical Analysis

• For any k, v and t, given the same number N as CT,
Random has at least 63% of finding t-wise bug	

• Probability goes to 100% for increasing k	

• Example: v=4 and k=100 probability is at least 94%!!!

Implications of Theory

• Confirms and explains Bach&Schroeder’s empirical
results.	

• For large k, Random as effective as CT for t	

• If automated oracle: can generate/run more than N
given same time	

• More tests: higher fault detection for greater t

Sorry... going to show some
theory... how to prove a 63%
lower bound?

First, calculate probability p_f of random test
finding a failure (if any exist)

Which is one over all possible combinations of t
variables	

!

Example: t=2 and v=4, p_f is at least1/4*4 = 1/16

Second, calculate probability of at least one
test case fails out of N

Which is 1 minus probability of none failing.	

Probability of none failing is probability of
pass (1-p_f) repeated N times

Now, thanks to the following inequality, we
conclude the proof. Note: trivial lower bound for
N is ie, all possible combinations of t
variables

References

• Andrea Arcuri. Theoretical Analysis of Local Search in
Software Testing. In Symposium on Stochastic Algorithms,
Foundations and Applications (SAGA), pp. 156-168, Japan,
2009.	

• Andrea Arcuri and Lionel Briand. Formal Analysis of the
Probability of Interaction Fault Detection Using
Random Testing. IEEE Transactions on Software
Engineering, vol. 38, issue 5, pp. 1088-1099, 2012.

Conclusion

• Theory can tell you why things happen in a particular
way	

• Can answer scalability questions	

• Just another tool to address research questions	

• Theory and empirical studies should go together hand-in-hand	

• Might be difficult to carry out on real-world
problems, if possible at all	

• see Theory track at GECCO

