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Why Theory!?

® Counterintuitive example of scalability

What works in empirical studies might not scale to larger instances

® Some general results

Valid for all instances, all sizes

® Explain why



In this talk, focus on the
results, not on the math
behind them...



A Scalability Example



Runtime Analysis

® Expected (average) number of fitness
evaluations before global optimum

® Function of the problem size

eg, size of array in sorting algorithm



(Very) Simple Example



Runtime

® vintegers as input
® Each integer is bounded in [0,n]

® For algorithm A, runtime will be r(A,v,n)



Considered Algorithms

® Random Search (RS)

® Two variants of Hill Climbing, with random
restarts when local optima

® HCint: +-1 on integer values
e HCbit: bit flipping

® Fitness: branch distance



Example

n==15 (range [0,15])
v==1 (only | input)
x==8, binary(8)=1000

Let the (random) starting point be 0
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Runtime when v==]

r(RS,1,n) = G(n)
r(HCint, 1,n) = O(n)
r(HCbit, 1,n) = O(log(n)*)

HCint same asymptotic runtime as RS



But for fixed n and large v...

® r(RS,v,n=c) = e@(v)

¢ r(HCint,v,n=c) = O(*)
e r(HCbit,l,n=c) = OG*")

® RS and HCbit have exponential runtime



Fitness Evaluations
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For small v, HCint is not
better than RS, and
HCbit is faster

But HCint is the only
one that scales, ie no
exponential runtime



What'’s going on???

® Bit representation is faster, but has local optima

binary(7)=0111 is local optimum for target binary(8)=1000

® When local optimum, HC needs restart

® Number of restarts exponential in v

so negligible for low values of v



Some General Results



Combinatorial Testing (CT)

® [ variables having v possible values

® tis the target combination strength to cover

eg t=2 consider all possible pairs

® N:test cases covering all t-wise combinations
® Goal: minimize N while covering all t combinations

® Assume no constraints among variables

all combinations are valid



CT Tools

® Many CT tools exist

® (Usually) scalability problems

eg when k is in the order of hundreds/thousands

can take hours, days, or simply crash...

® Why not generating the N test cases at
random???



Is Random really bad?

® Random found more bugs than CT

® |.Bach and P.Schroeder. Pairwise testing:
A best practice that isn’t. In Proceedings
of 22nd Pacific Northwest Software
Quality Conference, pages 180—196,2004.



Theoretical Analysis

® For any k,vand t, given the same number N as CT,
Random has at least 63% of finding t-wise bug

® Probability goes to 100% for increasing k

® Example: v=4 and k=100 probability is at least 94%!!!



Implications of Theory

Confirms and explains Bach&Schroeder’s empirical
results.

For large k, Random as effective as CT for t

If automated oracle: can generate/run more than N
given same time

More tests: higher fault detection for greater t



Sorry... going to show some
theory... how to prove a 63%
lower bound!?



First, calculate probability p_f of random test
finding a failure (if any exist)
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Which is one over all possible combinations of t
variables

Example: t=2 and v=4, p_fis at leastl/4*4 = 1/16



Second, calculate probability of at least one
test case fails out of N
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Which is | minus probability of none failing.
Probability of none failing is probability of
pass (|-p_f) repeated N times



Now, thanks to the following inequality, we
conclude the proof. Note: trivial lower bound for
N is [I;_ v ie, all possible combinations of t
variables
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Conclusion

® Theory can tell you why things happen in a particular
way

® Can answer scalability questions

® Just another tool to address research questions

Theory and empirical studies should go together hand-in-hand

® Might be difficult to carry out on real-world
problems, if possible at all

see Theory track at GECCO



