Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion

Using program slicing data to predict code faults

David Bowes University of Hertfordshire

February 10, 2010

Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion

Using program slicing data to predict code faults

Calculating the Slicing metrics for a 'module'

Relating slicing metrics to 'fault' data

Conclusion

Why?

- Defect prediction 70% using machine learning
- Slicing Metrics rarely used for defect prediction
- Slicing metrics have some relationship of cohesion
- Slicing metrics do not tend to be a proxy for LOC

Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion

Code example

Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

Code example

```
public class Fib {
```

```
int start=1;//may be err?
```

```
public static void main(String[] args) {
  Fib f = new Fib();
  for (int i = 1; i < 10; i++) {
     System.out.println(i+" "+f.fib(i));
public int fib(int n) {
  int a = 0, b = 1;
  int c = start, d = 1;//fix me?
  while (c < n) {
     System.out.printf(" debug %d/r/n", d):
     d = a + b;
     a = b:
     b = d:
     C++:
  return b;
}
```

Code example Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

Slicing Metrics

Weiser ,Ott and Thuss defined a set of slice based metrics including:

- Tightness :The number of statements which are in every slice. High tightness values suggest that the code is cohesive.
- Overlap : Indicates how many statements in a slice are found only in that slice
- Coverage : Compares the length of slices to the length of the entire program
- Min Coverage :The length of the shortest slice as a proportion of the program length
- Max Coverage : Length of the longest slice as a proportion of the program length

New metric Counsel et al

NHD

Code example Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

Which variables to choose?

Previous studies exploring the efficacy of slice-based metrics have tended to use different sets of variables in specifying the slices:

Categories	Description	Studies			
Formal ins (V_i)	Input parameters for the function specified in the module declaration	6			
Formal outs (V_o)	$ \text{rmal outs } (V_o) \qquad \text{The set of return variables} $				
Global variables (V_g)	The set of variables which are used or may be affected by the module	9			
printfs (V_p)	Variables which appear as formal outs in the list of parameters in an output statement (e.g. printf)	7			

Code example Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

Code example

```
public class Fib {
```

```
int start=1;//may be err?
```

```
public static void main(String[] args) {
  Fib f = new Fib();
  for (int i = 1; i < 10; i++) {
     System.out.println(i+" "+f.fib(i));
public int fib(int n) {
  int a = 0, b = 1;
  int c = start, d = 1;//fix me?
  while (c < n) {
     System.out.printf(" debug %d/r/n", d):
     d = a + b;
     a = b:
     b = d:
     C++:
  return b;
}
```

Code example Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

What impact does the choice of variables have?

- Studied barcode, open source barcode printing utility.
 - http://ar.linux.it/software/barcode/barcode.html
- ► For 15 variants of variables:

Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion Code example Slicing Metrics Which variables to choose? Code example What impact does the choice of variables have?

Vi	Vo	Vg	Vp	Overlap	Tightness	Coverage	Min C	Max (
+	+	+	+	0.649	0.481	0.691	0.523	0.901
+	+	+		0.643	0.482	0.705	0.524	0.901
+	+		+	0.712	0.551	0.717	0.588	0.898
+		+	+	0.759	0.563	0.712	0.587	0.892
	+	+	+	0.745	0.519	0.671	0.543	0.845
+	+			0.728	0.560	0.743	0.590	0.898
		+	+	0.772	0.518	0.653	0.538	0.820
+			+	0.839	0.672	0.764	0.694	0.885
	+	+		0.767	0.521	0.653	0.544	0.761
+		+		0.728	0.560	0.743	0.590	0.898
	+		+	0.820	0.591	0.688	0.610	0.792
+				0.944	0.823	0.856	0.832	0.885
	+			1.000	0.612	0.612	0.612	0.612
		+		0.851	0.538	0.639	0.547	0.717
			+	0.749	0.464	0.597	0.496	0.778

David Bowes University of Hertfordshire

Using program slicing data to predict code faults

'Cleaning' the data Building a prediction model ?Wackit into Weka? result

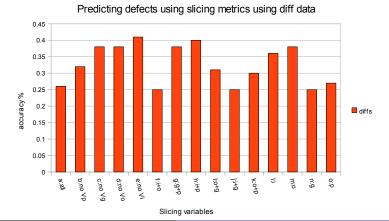
Relating slicing metrics to 'fault' data:Getting data

Technique:

- Find a bug fix
- Assume before (α) was defective and after (β) was less defective.
- ► do the metrics of \(\alpha\) predict a change to less defective state \(\beta\)?¹

¹This technique produces balanced data so accuracy can be used to compare results.

Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion 'Cleaning' the data Building a prediction model ?Wackit into Weka? result

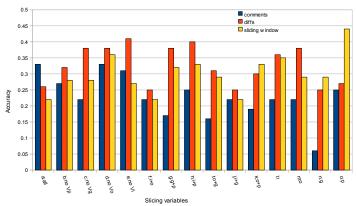

Wack it into Weka

For each variant of slicing variable:

- format the data for Weka
- use Naive Bayesian Classifier
- 10 fold cross validation
- report accuracy

Using program slicing data to predict code faults Calculating the Slicing metrics for a 'module' Relating slicing metrics to 'fault' data Conclusion 'Cleaning' the data Building a prediction model ?Wackit into Weka? result

Results using diff data

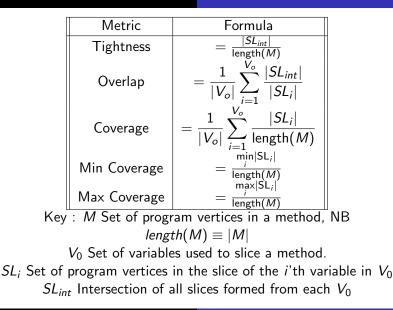


David Bowes University of Hertfordshire

Using program slicing data to predict code faults

'Cleaning' the data Building a prediction model ?Wackit into Weka? result

Results


Accuracy measure for predicting defectiveness from slicing metrics

David Bowes University of Hertfordshire Using program slicing data to predict code faults

Conclusion/Analysis

- Choice of slicing variables has an impact on slicing metrics
- Learning defects from slicing metrics may be domain specific
- Slicing metrics on their own do not predict defects 'better' than other studies. Or even picking a classification at random
- There aren't enough bug fixes!
- Looking at defect boundaries may not be the best approach.
 - A patch is likely to need patching.... does the quality of code improve with patching?
 - defect mining with defect boundaries may predict if the patch was good if we study the pattern of patching after.

Appendix

