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■  Soft-Errors (Transient hardware faults)!
■  Induced by e.g., radiation, glitches, insufficient signal integrity
■  Affecting microcontroller logic
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■  Soft-Errors (Transient hardware faults)!
■  Induced by e.g., radiation, glitches, insufficient signal integrity
■  Affecting microcontroller logic

■  Future hardware designs: more performance and parallelism !
→ On the price of being less and less reliable !
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■  Soft-Errors (Transient hardware faults)!
■  Induced by e.g., radiation, glitches, insufficient signal integrity
■  Affecting microcontroller logic

■  Future hardware designs: more performance and parallelism !
→ On the price of being less and less reliable !

Toyota Acceleration Case
■  Electronic throttle control system (2005 Camry) 

“Toyota claimed the 2005 Camry's main CPU had error  
 detecting and correcting RAM. It didn't.” 2

■  Unintended acceleration potentially involving 261 deaths1
■  Experts identified soft errors as possible cause1

1 US News, Mar 17, 2010     2 Investigation Report, EDN Network, Oct 28, 2013

[3]
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■  Software-based redundancy!
■  Triple Modular Redundancy (e.g., recommended by ISO 26262)
!  Selective and adaptive
!  Resource efficient
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■  Software-based redundancy!
■  Triple Modular Redundancy (e.g., recommended by ISO 26262)
!  Selective and adaptive
!  Resource efficient

■  Single points of failure!
■  Interface and Majority Voter
■  Allowing for Silent Data Corruptions (SDC)
→  Replication is impossible!

Safety-Critical System!
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Threats to Applicability – Mission failed? 
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■  Triple modular redundancy reliability !
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■  Triple modular redundancy reliability !

■  Voting on unreliable hardware?!
■  Very small � residual error probability?
■  Risk analysis � inherently complex (no random error distribution! [4]) 
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■  Triple modular redundancy reliability !

■  Voting on unreliable hardware?!
■  Very small � residual error probability?
■  Risk analysis � inherently complex (no random error distribution! [4]) 

→ Dealbreaker for software-based TMR !

RTMR = RVoter ⋅R2−of −3
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#  Eliminate single points of failure
#  Constrain residual error probability
#  Dependability as a resource efficient option

Safety-Critical System!
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Agenda
■  Introduction!
■  The Combined Redundancy approach (CoRed )!

■  Holistic protection – eliminating single points of failure
■  Arithmetic coding
■  Dependable voting

■  Constraining residual error probability!

■  From coding theory to application – lessons learned
■  Finding appropriate parameters
■  Circumvent implementation pitfalls

■  Evaluation!

■  Use case
■  Experimental setup
■  Fault-injection results

■  Conclusion!
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CoRed Overview – Holistic Protection Approach

■  The Combined Redundancy Approach (CoRed )!
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■  The Combined Redundancy Approach (CoRed )!
Data-flow encoding
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CoRed Overview – Holistic Protection Approach

■  The Combined Redundancy Approach (CoRed )!
Data-flow encoding
Dependable voters
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CoRed Overview – Holistic Protection Approach

■  The Combined Redundancy Approach (CoRed )!
Data-flow encoding
Dependable voters

■  Holistic protection approach for control applications!
■  Input to output protection"

1  Reading inputs  �  2  Processing  �  3  Distributing outputs
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Eliminating Input and Output Vulnerabilities 

■  Arithmetic Codes � ANBD Code !
■  Based on VCP [5]
■  Data integrity:  Key
■  Address integrity: Per variable signature
■  Outdated data:  Timestamp

                                              !
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Eliminating Input and Output Vulnerabilities 

■  Arithmetic Codes � ANBD Code !
■  Based on VCP [5]
■  Data integrity:  Key
■  Address integrity: Per variable signature
■  Outdated data:  Timestamp

■  Set of arithmetic operators (+, -, *, =, …)!
■  Checksum vs. Arithmetic code (AN code)
■  AN Code � Encoded data operations
■  Enabler for dependable voter
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CoRed Dependable Voter – Basics

■  CoRed Dependable Voter!
■  Input: variants ( X’, Y’, Z’ )
■  Output: Equality set (E) and encoded winner (W)
■  No decoding necessary

■  Control-flow signatures !
■  Static signature (expected value): Compile-time "
� Used as return value E 

■  Dynamic signature (actual value): Runtime, computed from variants  "
� Applied to winner W 

■  Validation: Subsequent check (decode)
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Agenda
■  Introduction!
■  The Combined Redundancy approach (CoRed )!

■  Holistic protection – eliminating single points of failure
■  Arithmetic coding
■  Dependable voting

■  Constraining residual error probability!

■  From coding theory to application – lessons learned
■  Finding appropriate parameters
■  Circumvent implementation pitfalls

■  Evaluation!

■  Use case
■  Experimental setup
■  Fault-injection results

■  Conclusion!
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From Coding Theory to Application
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Safety-Critical System!
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∑  Decoded_Static() { 

  TAssert(_B > 0);  

  assert(check()); 

  return (vc-_B-D)/_A; 

 }; 
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 Arithmetic coding operations !

Mathematics
C / C++

Assembler

Know your compiler  
& architecture 

Think binary 



Constraining residual error probability

■  Coding theory!
■  Data word + redundant information = code word
■  Fault detection � distance between code words

                             !
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Constraining residual error probability

■  Coding theory!
■  Data word + redundant information = code word
■  Fault detection � distance between code words

■  Residual error probability !
■  Chance for code-to-code word mutation
■  Fundamental property for fault tolerance mathematics
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Fig. 4. p

sdc

versus size of A, compared: p

pred

plots the coding theory
prediction. p

avg

graphs the measured value for 8-bit errors, exemplary for
average performance. p

brd

illustrates variance of borderline bit errors that
overstress the code by exactly 1-bit (2, 3 or 4-bit errors, depending on A).

From a binary point of view, in fact, the only purpose of
A is to generate robust bit patterns. Consequently, it might
seem obvious to use the minimum Hamming distance (dH )
between all possible code words as the measure of choice. We
therefore computed the distances for all 32-bit codes. That is,
for each and every 16-bit value v and key A. We found dH to
range from one to six depending on A, which means that zero
to five-bit errors should be detectable by the respective codes.
Interestingly, although we could observe the expected gain in
distance with A growing, the values of dH varied significantly
between adjacent values. For example, the distance for non-
prime 58 368 is two, that of prime 58 831 is three, and finally
the minimum Hamming distance of 58 659 is six – being a
non-prime value. The main reason is that ANBD codes are
non-systematic codes [14], meaning that the assumed n data
and k check bits are stored inseparable and processed together.
Hence, the code’s minimum distance is not necessarily related
to the k bits used for representing A, but may vary according
to the binary representation of A · v. As a result, the bigger
the better is misleading in this case.

To our surprise we found the results to be deviating from
the literature. Schiffel [3] for example performed fault injection
experiments for a small number of As, which indicate a residual
error probability even for faults with a number of bits flips that
is below dH . These deviations in turn would in principle render
the Hamming distance useless for selecting an appropriate A

to reliably detect a certain number of bit flips. We decided to
perform fault-simulation experiments to double check whether
the fault-detection capabilities of the codes correspond to the
computed minimal Hamming distances. These experiments
covered each and every combination of possible vs, As and
bit error patterns. Again we were surprised to actually observe
the exact same deviations in psdc and silent data corruptions,
which should have been detected according to the code’s dH .

We found the problem in the mapping of encoded values to
their binary representation, for example 32-bit machine words.
Of these, a practitioner usually assigns n bits to data and k

additional bits to accommodate A, with A  2k and n+k  32.
Choosing A = 2k is obviously unreasonable as this would lead
to a simple bit shift. Selecting A < 2k, however, results in an
incomplete utilization of the machine word, which leaves a
residue in terms of unused values. To put it simple, AN codes

tend to result in odd value ranges that cannot be represented
by exactly a power of two bits. The residue is again non-
systematic and can neither be attributed to certain bit positions
nor a specific number of bits. However, the coding theory is
unaware of this mapping issue and assumes a self-contained
code space and value range. Consequently, soft errors striking
these unused bits can still lead to SDCs as the mutation may
result in a valid but unused code word with v > 2n.

Pitfall 1: Mapping Code to Binary

Our first pitfall is therefore the mapping of code to binary
space: Due to the different and sometimes odd word sizes
of plain and encoded data, dangerous over- and underflow
conditions, coming to light only in the presence of soft
errors, are not always obvious to the developer. This par-
ticular problem led to the observed discrepancies between
dH , predicted psdc and fault-simulation experiments. By
adding a simple range check we were able to fix this issue,
resulting in the following patch for the CoRed voter:

1: function DECODE(v
c

, A, B)
2: if v

c

> v

c,max

or v

c

mod A 6= B then
3: SIGNAL_DUE()
4: end if
5: return (v

c

�B) div A

6: end function

1

With this improved implementation of D E C O D E, the fault-
simulation results of EAN match with the fault-detection capa-
bilities as expected by the minimal Hamming distance. On top
of that, this simple check can prevent a huge loss of reliability
to the code in general. For example, the predicted overall psdc
is approximately 0.003 for A = 251. For 64-bit code words,
Schiffel measured the double-bit error’s psdc ⇡ 0.013, as we
did in our first attempt. However, with the patch applied the
actual psdc amounts to less than 0.000015 – a factor of 1000.

Consequently, dH is a valid decision criterion for selecting
A. The good news is that any A exhibits a sufficient distance
for single-bit errors, except the aforementioned powers of two.
As expected, the top performers reside in the upper end of
the value range, irrespective of the ubiquitous variations. We
termed the best of them, with a distance of six, Super As1 –
non of them being prime. As expected, bit errors < dH are
reliably detected by the EAN code. However, with bit errors
� dH SDCs are still possible, and again we found A to
have a significant influence on the actual psdc. We therefore
evaluated the multi-bit error performance (up to 8 bits) for
all 16-bit As as well. Although the resulting codes generally
behaved as predicted, we identified the borderline bit errors to
be dangerous. These overstress the code by one bit (exactly
dH errors) and induce huge variations in the resulting psdc.
Figure 4 shows the predicted (ppred) and the measured residual
error probabilities versus the size of A. To keep the diagram
readable, we simplified the plot by combining borderline bit
errors in pbrd and hand-picking pavg as a representative for
the benign average case performance. As the actual borderline
depends on the respective A’s distance, pbrd fuses two to
four-bit errors and graphs their range. In contrast, the average
case, non-borderline error probability (pavg) is near below the
prediction and virtually free of scatter.

1Super As: 58 659, 59 665, 63 157, 63 859, and 63 877.

Constraining residual error probability

■  Coding theory!
■  Data word + redundant information = code word
■  Fault detection � distance between code words

■  Residual error probability !
■  Chance for code-to-code word mutation
■  Fundamental property for fault tolerance mathematics
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Choosing Keys and Signatures
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■  Mathematics: prime numbers !
■  Intuitively plausible
■  Literature: little help to find suitable As

■  Practitioner’s approach: min. Hamming distance!
■  Distance (d) between code words (# unequal bits)
■  d-1 bit error detection capabilities 

■  Brute force!
■  1.4×1014 experiments for all 16 bit As

A = 58,368     dmin = 2    #errors detectable = 1
 58,831    3      2
 58,659 " " " "6 " " " " " "5

→ The bigger the better is misleading! "!

1! 0! 1! 0!
1! 1! 0! 0!
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graphs the measured value for 8-bit errors, exemplary for
average performance. p

brd

illustrates variance of borderline bit errors that
overstress the code by exactly 1-bit (2, 3 or 4-bit errors, depending on A).

From a binary point of view, in fact, the only purpose of
A is to generate robust bit patterns. Consequently, it might
seem obvious to use the minimum Hamming distance (dH )
between all possible code words as the measure of choice. We
therefore computed the distances for all 32-bit codes. That is,
for each and every 16-bit value v and key A. We found dH to
range from one to six depending on A, which means that zero
to five-bit errors should be detectable by the respective codes.
Interestingly, although we could observe the expected gain in
distance with A growing, the values of dH varied significantly
between adjacent values. For example, the distance for non-
prime 58 368 is two, that of prime 58 831 is three, and finally
the minimum Hamming distance of 58 659 is six – being a
non-prime value. The main reason is that ANBD codes are
non-systematic codes [14], meaning that the assumed n data
and k check bits are stored inseparable and processed together.
Hence, the code’s minimum distance is not necessarily related
to the k bits used for representing A, but may vary according
to the binary representation of A · v. As a result, the bigger
the better is misleading in this case.

To our surprise we found the results to be deviating from
the literature. Schiffel [3] for example performed fault injection
experiments for a small number of As, which indicate a residual
error probability even for faults with a number of bits flips that
is below dH . These deviations in turn would in principle render
the Hamming distance useless for selecting an appropriate A

to reliably detect a certain number of bit flips. We decided to
perform fault-simulation experiments to double check whether
the fault-detection capabilities of the codes correspond to the
computed minimal Hamming distances. These experiments
covered each and every combination of possible vs, As and
bit error patterns. Again we were surprised to actually observe
the exact same deviations in psdc and silent data corruptions,
which should have been detected according to the code’s dH .

We found the problem in the mapping of encoded values to
their binary representation, for example 32-bit machine words.
Of these, a practitioner usually assigns n bits to data and k

additional bits to accommodate A, with A  2k and n+k  32.
Choosing A = 2k is obviously unreasonable as this would lead
to a simple bit shift. Selecting A < 2k, however, results in an
incomplete utilization of the machine word, which leaves a
residue in terms of unused values. To put it simple, AN codes

tend to result in odd value ranges that cannot be represented
by exactly a power of two bits. The residue is again non-
systematic and can neither be attributed to certain bit positions
nor a specific number of bits. However, the coding theory is
unaware of this mapping issue and assumes a self-contained
code space and value range. Consequently, soft errors striking
these unused bits can still lead to SDCs as the mutation may
result in a valid but unused code word with v > 2n.

Pitfall 1: Mapping Code to Binary

Our first pitfall is therefore the mapping of code to binary
space: Due to the different and sometimes odd word sizes
of plain and encoded data, dangerous over- and underflow
conditions, coming to light only in the presence of soft
errors, are not always obvious to the developer. This par-
ticular problem led to the observed discrepancies between
dH , predicted psdc and fault-simulation experiments. By
adding a simple range check we were able to fix this issue,
resulting in the following patch for the CoRed voter:

1: function DECODE(v
c

, A, B)
2: if v

c

> v

c,max

or v

c

mod A 6= B then
3: SIGNAL_DUE()
4: end if
5: return (v

c

�B) div A

6: end function

1

With this improved implementation of D E C O D E, the fault-
simulation results of EAN match with the fault-detection capa-
bilities as expected by the minimal Hamming distance. On top
of that, this simple check can prevent a huge loss of reliability
to the code in general. For example, the predicted overall psdc
is approximately 0.003 for A = 251. For 64-bit code words,
Schiffel measured the double-bit error’s psdc ⇡ 0.013, as we
did in our first attempt. However, with the patch applied the
actual psdc amounts to less than 0.000015 – a factor of 1000.

Consequently, dH is a valid decision criterion for selecting
A. The good news is that any A exhibits a sufficient distance
for single-bit errors, except the aforementioned powers of two.
As expected, the top performers reside in the upper end of
the value range, irrespective of the ubiquitous variations. We
termed the best of them, with a distance of six, Super As1 –
non of them being prime. As expected, bit errors < dH are
reliably detected by the EAN code. However, with bit errors
� dH SDCs are still possible, and again we found A to
have a significant influence on the actual psdc. We therefore
evaluated the multi-bit error performance (up to 8 bits) for
all 16-bit As as well. Although the resulting codes generally
behaved as predicted, we identified the borderline bit errors to
be dangerous. These overstress the code by one bit (exactly
dH errors) and induce huge variations in the resulting psdc.
Figure 4 shows the predicted (ppred) and the measured residual
error probabilities versus the size of A. To keep the diagram
readable, we simplified the plot by combining borderline bit
errors in pbrd and hand-picking pavg as a representative for
the benign average case performance. As the actual borderline
depends on the respective A’s distance, pbrd fuses two to
four-bit errors and graphs their range. In contrast, the average
case, non-borderline error probability (pavg) is near below the
prediction and virtually free of scatter.

1Super As: 58 659, 59 665, 63 157, 63 859, and 63 877.

Consistence with Coding Theory – Mission Failed?

■  Fault-simulation � entire fault-space !
■  Each and every A, v and fault pattern
■  6.5×1016 experiments for 16 bit As and 1-8 bit soft errors

→ Excess of predicted residual error probability"!
→ Violation of predicted fault-detection capabilities !
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Think Binary
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■  Binary representation of code words !
■  Coding theory is unaware of machine word sizes
→  Dangerous over- and underflow conditions 
■  Extended AN code (EAN) implementation

→ Compliance with coding theory!!
■  Improved code reliability (A = 251)!

■  Predicted           3×10-3
■  Common implementation [4] ≈ 1.3×10-2

■  EAN implementation   ≈ 1.5×10-5

→ Improvement by orders of magnitude! !



Know your Compiler and Architecture
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■  On target fault-injection � entire fault space !
■  Each and every register, flag, instruction and execution path
■  FAIL* fault injection framework [6]

→ Violation of predicted fault-detection capabilities!

■  Architecture specifics !
■  Absence of compound test-and-branch (e.g., IA32 architecture)
■  Control-flow information is stored in single bit
→  Redundancy is lost 
→  Additional range checks

■  Undefined Execution Environment !
■  Zombie values � leaking from caller to voter function
■  Compiler laziness leaves encoded values in registers
→  Isolation assumptions violated
→  Cleaning local storage restores isolation

→ Tight feedback loop with fault-injection experiments!



Agenda
■  Introduction!
■  The Combined Redundancy approach (CoRed )!

■  Holistic protection – eliminating single points of failure
■  Arithmetic coding
■  Dependable voting

■  Constraining residual error probability!

■  From coding theory to application – lessons learned
■  Finding appropriate parameters
■  Circumvent implementation pitfalls

■  Evaluation!

■  Use case
■  Experimental setup
■  Fault-injection results

■  Conclusion!
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Evaluation – Experimental Setup 
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Evaluation – Experimental Results (1)

■  Redundant execution campaign (Interface) !
■  Total: ~45,000 Errors
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Evaluation – Experimental Results (1)

■  Redundant execution campaign (Interface) !
■  Total: ~45,000 Errors
   Unprotected: Suffers from 3,622 corruptions!
■  TMR: Suffers from 71 corruptions!
■  CoRed: Remaining corruptions are covered � 0 corruptions
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Evaluation – Experimental Results (2)

■  Voter campaign !
               
                                                               
                            "
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■  Voter campaign !
■  Plain voter:

Total ~11,000  2,465 masked  7,245 retry 1,223 corruptions
                            "
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Evaluation – Experimental Results (2)

■  Voter campaign !
■  Plain voter:

Total ~11,000  2,465 masked  7,245 retry 1,223 corruptions
■  CoRed Dependable Voter: "

Total ~26,000  1,228 masked  24,682 retry 0 corruptions
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Evaluation – Overhead
■  Overhead Analysis !

■  I4Copter Flight-Control: 7.1% overhead "
(compared to plain TMR)

■  Selectivity!
■  I4Copter system CPU utilisation: 41% "
� Full replication impossible, CPU: 120%

■  Mission-critical replication of flight control"
� possible with CoRed, CPU: 60% 



Conclusion

�  Eliminate single points of failure [1]!
                                               
                                      

                                           !
                                                    
                                                            
                          

                                               !
                                              

                                                          !
Peter Ulbrich – ulbrich@cs.fau.de 22

Safety-Critical System!

Sensors( Actuators(Replica(2(

Replica(3(

Replica(1(

Majority(
Voter(Interface(



Conclusion

�  Eliminate single points of failure [1]!
■  TMR + Encoding: Combined Redundancy approach
■  Key feature: CoRed Dependable Voter

                                           !
                                                    
                                                            
                          

                                               !
                                              

                                                          !
Peter Ulbrich – ulbrich@cs.fau.de 22

Safety-Critical System!

Sensors( Actuators(Replica(2(

Replica(3(

Replica(1(

Majority(
Voter(Interface( Replica(2(

Replica(3(

Replica(1(

CoRed(
Voter(

EAN(
Coding(

Decode(

Decode(

Decode(

Encode(

Encode(

Encode(



Conclusion

�  Eliminate single points of failure [1]!
■  TMR + Encoding: Combined Redundancy approach
■  Key feature: CoRed Dependable Voter

�  Constrain residual error probability [2] !
■  Parameterisation guidelines: choosing the right A
■  Binary aware implementation: complying with coding theory
■  Factor 1000 improvement

�  Dependability as a resource efficient option !
■  Only 7.1% overhead (flight control example)
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Conclusion

�  Eliminate single points of failure [1]!
■  TMR + Encoding: Combined Redundancy approach
■  Key feature: CoRed Dependable Voter

�  Constrain residual error probability [2] !
■  Parameterisation guidelines: choosing the right A
■  Binary aware implementation: complying with coding theory
■  Factor 1000 improvement

�  Dependability as a resource efficient option !
■  Only 7.1% overhead (flight control example)

→ Bullet-proof software-based fault tolerance is possible!
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