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Soft Errors — A Growing Problem
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m  Soft-Errors (Transient hardware faults)
= |nduced by e.g., radiation, glitches, insufficient signal integrity
= Affecting microcontroller logic
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m  Soft-Errors (Transient hardware faults)

= |nduced by e.g., radiation, glitches, insufficient signal integrity
= Affecting microcontroller logic

= Future hardware designs: more performance and parallelism
— On the price of being less and less reliable
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4+ = Electronic throttle control system (2005 Camry)
o+ “Toyota claimed the 2005 Camry's main CPU had error
detecting and correcting RAM. It didn't.” ?
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= Unintended acceleration potentially involving 261 deaths
= sd ™ Experts identified soft errors as possible cause’

TUS News, Mar 17, 2010 2 Investigation Report, EDN Network, Oct 28, 2013
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= Future hardware designs: more performance and parallelism
— On the price of being less and less reliable
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Software-Based Fault Tolerance

Safety-Critical System
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[ ] Isolationdomain [ ] Sphere of redundancy (SOR)

= Software-based redundancy
= Triple Modular Redundancy (e.g., recommended by ISO 26262)
v’ Selective and adaptive
v" Resource efficient
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Software-Based Fault Tolerance

Safety-Critical System

o

[ ] Isolation domain

= Software-based redundancy
= Triple Modular Redundancy (e.g., recommended by ISO 26262)

—; —P Replica 1
. Majority d
Interface —P Replica 2 Voter
—P Replica 3

v’ Selective and adaptive
v" Resource efficient

= Single points of failure

m |nterface and Majority Voter

[ ] Sphere of redundancy (SOR)

= Allowing for Silent Data Corruptions (SDC)
— Replication is impossible!
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Threats to Applicability — Mission failed?

Replica Reliability (Rgep)
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= Triple modular redundancy reliability

RTMR = RVoter ) R2—0f -3
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= Voting on unreliable hardware?
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= Risk analysis — inherently complex (no random error distribution! [4])
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= Triple modular redundancy reliability

RTMR =R

= Voting on unreliable hardware?
= Very small — residual error probability?

= Risk analysis — inherently complex (no random error distribution! [4])

Voter

— Dealbreaker for software-based TMR
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Safety-Critical System
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[ ] Isolationdomain [____ ] Sphere of redundancy (SOR)

Eliminate single points of failure

Constrain residual error probability

Dependability as a resource efficient option
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Agenda

m [ntroduction

= The Combined Redundancy approach (CoRed )
m  Holistic protection — eliminating single points of failure
m  Arithmetic coding
m  Dependable voting

= Constraining residual error probability
m From coding theory to application — lessons learned
m  Finding appropriate parameters
m Circumvent implementation pitfalls

= Evaluation
m Use case
m  Experimental setup
m  Fault-injection results

= Conclusion
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CoRed Overview — Holistic Protection Approach
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CoRed Overview — Holistic Protection Approach
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CoRed Overview — Holistic Protection Approach
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= The Combined Redundancy Approach (CoRed)
Data-flow encoding
TMR + { Dependable voters

= Holistic protection approach for control applications

= |nput to output protection
1 Reading inputs — 2 Processing — 3 Distributing outputs
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Eliminating Input and Output Vulnerabilities

SOR

Y Y’
(Value) — Encode )_ (Encoded Value) > Decode > Y

X X’
(Value) —P Encode )_ (Encoded Value) < Decode > X

= Arithmetic Codes — ANBD Code
= Based on VCP [5]

= Data integrity: Key
= Address integrity:  Per variable signature vi=A-v+B+D
= Qutdated data: Timestamp
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Eliminating Input and Output Vulnerabilities

SOR
(VaIIZe) —> Encode
E VAL Decode —» Z=XoY
(V:i{le) —> Encode

= Arithmetic Codes — ANBD Code
Based on VCP [5]

= Data integrity: Key
= Address integrity:  Per variable signature vi=Av+B+D
= Qutdated data: Timestamp

= Set of arithmetic operators (+, -, *, =, ...)

m  Checksum vs. Arithmetic code (AN code)
= AN Code — Encoded data operations
= Enabler for dependable voter
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CoRed Dependable Voter — Basics

X’

Replical X

Replica2 Y Encoded Voter

Replica3 7 e.g., X' is the winner

Provider ' Encoded Voter Consumer

m CoRed Dependable Voter
® |nput: variants (X’, Y’, Z°)
= Qutput: Equality set (E) and encoded winner (W)
= No decoding necessary

= Control-flow signatures

m  Static signature (expected value): Compile-time
— Used as return value E

= Dynamic signature (actual value): Runtime, computed from variants
— Applied to winner W

= Validation: Subsequent check (decode)
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From Coding Theory to Application

Safety-Critical System
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Constraining residual error probability

Value Space Code Space

® Valid Code Word

.,/E)istance

Encode

Valid Data Word o

Arithmetic Operation

= Coding theory vi=A-v+B+D
= Data word + redundant information = code word
m  [Fault detection — distance between code words
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Constraining residual error probability

Value Space Code Space

® Valid Code Word

.,/E)istance

Encode

Valid Data Word o

Arithmetic Operation

= Coding theory vi=A-v+B+D
= Data word + redundant information = code word
m  [Fault detection — distance between code words

i - valid code words
= Residual error probability Py =

1
. “ " possible code words A
= Chance for code-to-code word mutation
= Fundamental property for fault tolerance mathematics
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Constraining residual error probability
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= Coding theory vi=A-v

= Data word + redundant information = code word
m  [Fault detection — distance between code words

valid code words _ l

. i . _
Residual error probability | Piac bossible code words A
= Chance for code-to-code word mutation
= Fundamental property for fault tolerance mathematics
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Choosing Keys and Signatures

= Mathematics: prime numbers
= |ntuitively plausible
m | jterature: little help to find suitable As

= Practitioner’s approach: min. Hamming distance
= Distance (d) between code words (# unequal bits)
m (-] bit error detection capabilities

= Brute force
= 1.4x10' experiments for all 16 bit As

A = 58,368 Apin = 2 #errors detectable = 1
58,831 3 2
58,659 6 5

— The bigger the better is misleading!
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Consistence with Coding Theory — Mission

~ailed?
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= Fault-simulation — entire fault-space
= Fach and every A, v and fault pattern
= 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

— Excess of predicted residual error probability

— Violation of predicted fault-detection capabilities

61440
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Think Binary

32-bit Machine Word

16-bit Machine Word
Encode

Code Space
/_
: .

= Binary representation of code words
= (Coding theory is unaware of machine word sizes
— Dangerous over- and underflow conditions
m  Extended AN code (EAN) implementation

— Compliance with coding theory!

= Improved code reliability (A = 2517)

= Predicted 3x1073
= Common implementation [4] ~1.3x1072
= EAN implementation ~ 1.5x107°

— Improvement by orders of magnitude!
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Know your Compiler and Architecture

= On target fault-injection — entire fault space
m [Each and every register, flag, instruction and execution path
= FAIL* fault injection framework [6]

— Violation of predicted fault-detection capabilities

= Architecture specifics
= Absence of compound test-and-branch (e.g., IA32 architecture)
= Control-flow information is stored in single bit
— Redundancy is lost
— Additional range checks

= Undefined Execution Environment
= Zombie values — leaking from caller to voter function
=  Compiler laziness leaves encoded values in registers
— [solation assumptions violated
— Cleaning local storage restores isolation

— Tight feedback loop with fault-injection experiments

O Peter Ulbrich — ulbrich@cs.fau.de
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= The Combined Redundancy approach (CoRed)
m  Holistic protection — eliminating single points of failure
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= Conclusion
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Evaluation — Experimental Setup

Flight-Control Application

FAIL* S E
Campaign Manager | ..

— 7 — |
[ System Under Test H Hardware Debugger }4 >[ Host Computer }

Categories: Fail Silent, Masked,
Hardware Detected, EAN-Code, Control-Flow,
Silent Data Corruption

Outcome: 401,592 experiments
Effective: 67,61/ errors
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Evaluation — Experimental Results (1)
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= Redundant execution campaign (Interface)

Distribution of Effective Faults
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m Total: ~45,000 Errors

Unprotected
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CoRed TMR
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Evaluation — Experimental Results (1)
——P| Replical 90 %

Interface _> Replica 2 80 % e st

|—> Replica 3 70 9% 1- I R AR B

60 % < |-l 1 W e

50 % —|--Q--4-1 o

40% -1 e

30% -1 [

Distribution of Effective Faults

I Silent Data Corruptions
[ 1 Hardware Detected

20 % + |-

[ EAN-Code Detected 10% -0
Il Masked
0 % - | |
= 2 35 O =z =z ¥
<
T I g 8 I & g
Unprotected Plain TMR CoRed TMR

= Redundant execution campaign (Interface)

m Total: ~45,000 Errors
Unprotected: Suffers from 3,622 corruptions!
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Evaluation — Experimental Results (1)
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= Redundant execution campaign (Interface)

Distribution of Effective Faults
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60 % —

50 % -

40 %
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20 % -

10 % +--

0%

m Total: ~45,000 Errors

Unprotected: Suffers from 3,622 corruptions!

Unprotected

= [MR: Suffers from 71 corruptions!

= CoRed: Remaining corruptions are covered — O corruptions

Plain TMR

CoRed TMR
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Evaluation — Experimental Results (2)
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Evaluation — Experimental Results (2)
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Evaluation — Experimental Results (2)
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Evaluation — Experimental Results (2)
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Evaluation — Overhead

= Overhead Analysis

14Copter Flight-Control: 7.1% overhead
(compared to plain TMR)

[ ] Hardware Deteq - Se|ectivity

|14Copter system CPU utilisation: 41%
— Full replication impossible, CPU: 120%

Mission-critical replication of flight control
— possible with CoRed, CPU: 60%

= Plain voter:
Total ~11,000

= CoRed Voter:
Total ~26,000

2,465 masked 7,245 retry 1,223 corruptions

1,228 masked 24,682 retry 0O corruptions
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Conclusion

Safety-Critical System
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O Peter Ulbrich — ulbrich@cs.fau.de

22



Conclusion

Safety-Critical System

EAN

Decode Replica 1 Encode
Decode Replica 2 Encode
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m  Key feature: CoRed Dependable Voter

Actuators
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Conclusion

Safety-Critical System

Decode Replica 1 Encode
EAN :
Sensors . Decode Replica 2 Encode Actuators
Coding
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m  Key feature: CoRed Dependable Voter

V1 Constrain residual error probability [2]
= Parameterisation guidelines: choosing the right A
= Binary aware implementation: complying with coding theory
= Factor 1000 improvement

V1 Dependability as a resource efficient option
= Only 7.1% overhead (flight control example)
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Conclusion

Safety-Critical System

Decode Replica 1 Encode
EAN .
Sensors . Decode Replica 2 Encode Actuators
Coding
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m  Key feature: CoRed Dependable Voter

V1 Constrain residual error probability [2]
= Parameterisation guidelines: choosing the right A
= Binary aware implementation: complying with coding theory
= Factor 1000 improvement

V1 Dependability as a resource efficient option
= Only 7.1% overhead (flight control example)

— Bullet-proof software-based fault tolerance is possible
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http://wwwd.cs.fau.de/Research/CoRed
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