Software-based Fault Tolerance -
Mission (Im)possible?

Peter Ulbrich

The 29th CREST Open Workshop on Software Redundancy
November 18, 2013

NGS
oV e
< ®
‘ :) I3 A
I | |
— oy — O — = ~
= —— -— c
e~ wm=m mm mm FRIEDRICH-ALEXANDER ZA &
== == == == ERLANGEN-NURNBERG System Software Group Embedded Systems Initiative

htto.//www4 .cs fau.de

Altitude (k

Soft Errors — A Growing Problem

Neutron Flux (factor)
10 100 1000

m Soft-Errors (Transient hardware faults)
= |nduced by e.g., radiation, glitches, insufficient signal integrity
= Affecting microcontroller logic

Peter Ulbrich — ulbrich@cs.fau.de

Altitude (k

(@)
x
<
73
[%
S
4

Soft Errors — A Growing Problem

Neutron Flux (factor)

N
i
—
O |
(@)}

1 10 100 1000 5

12 - A ‘ 10
* : * * . m
I S —— | T
10 Failure rate Q
Boeing E-3 (1990s) <
8 10' @
)
1 c
6 @ T S 10 @
© = 8 E
N S = -3 =+
4+ 5{0 g «3 10 @
8 ®
<
=

m Soft-Errors (Transient hardware faults)
= |nduced by e.g., radiation, glitches, insufficient signal integrity
= Affecting microcontroller logic

Peter Ulbrich — ulbrich@cs.fau.de 2

Altitude (k

Soft Errors — A Growing Problem

Neutron Flux (factor)
1 10 100 1000

—
o
(@)}

. m
E “© Aircraft ¢ 10° 8
- ‘ —
0 Ircrait Failure rate Q
Boeing E-3 (1990s) ;<
)
8 10 =
4
6 o ;:g_ 10 (:‘E
k\}KQ) g } Q -3 &)r
47 X° 218 107 @
'3 —
iv 2 5 §
2 —+ ‘ 10 o
y 7=
0. 10
Year 1992 1994 1997 1999 2002 2005 2008 2011

(Technology) (600nm) (350nm) (250nm) (180nm) (130nm) (100nm) (70nm) (50nm) [3]

m Soft-Errors (Transient hardware faults)

= |nduced by e.g., radiation, glitches, insufficient signal integrity
= Affecting microcontroller logic

= Future hardware designs: more performance and parallelism
— On the price of being less and less reliable

Peter Ulbrich — ulbrich@cs.fau.de 2

m)

Altitude (k

Soft Errors — A Growing Problem

Neutron Flux (factor)

L ,,d—— 10

1 10 100 1000
12 / _ . L p ,
10 Aerl’aft [M. .
. / W Boeing E-3 (1990s)
5 Toyota Acceleration Case
4+ = Electronic throttle control system (2005 Camry)
o+ “Toyota claimed the 2005 Camry's main CPU had error
detecting and correcting RAM. It didn't.” ?
O‘_‘
= Unintended acceleration potentially involving 261 deaths
= sd ™ Experts identified soft errors as possible cause’

TUS News, Mar 17, 2010 2 Investigation Report, EDN Network, Oct 28, 2013
u Fllecflng microcontroner I0gIC

= Future hardware designs: more performance and parallelism
— On the price of being less and less reliable

—
o
(@)}

I
—
&)
w

—

I
—

3
(U0 1/Y) 81BJ BIN|IE) BAI}0BYT

I
—
@)

—
O 1
@)

—_k
O 1
~

2011
(50nm) [3]

Peter Ulbrich — ulbrich@cs.fau.de

Software-Based Fault Tolerance

Safety-Critical System

z

—P Replica 1 x
. Majority
@— Interface P Replica 2 Voter
—P Replica 3

[] Isolationdomain [] Sphere of redundancy (SOR)

= Software-based redundancy
= Triple Modular Redundancy (e.g., recommended by ISO 26262)
v’ Selective and adaptive
v" Resource efficient

O Peter Ulbrich — ulbrich@cs.fau.de

Software-Based Fault Tolerance

Safety-Critical System

o

[] Isolation domain

= Software-based redundancy
= Triple Modular Redundancy (e.g., recommended by ISO 26262)

—; —P Replica 1
. Majority d
Interface —P Replica 2 Voter
—P Replica 3

v’ Selective and adaptive
v" Resource efficient

= Single points of failure

m |nterface and Majority Voter

[] Sphere of redundancy (SOR)

= Allowing for Silent Data Corruptions (SDC)
— Replication is impossible!

0 Peter Ulbrich — ulbrich@cs.fa

u.de

Threats to Applicability — Mission failed?

Replica Reliability (Rgep)
| ‘ |

1 w —~
. 4

Assumption: /,/

perfect voter (R,= 1) /
o A~
T
z
a 2
S 05+
s
—_— //
m 4
o
> yd
O S

//
//
//
4
0+ :
0.5 1

= Triple modular redundancy reliability

RTMR = RVoter) R2—0f -3

O Peter Ulbrich — ulbrich@cs.fau.de

Threats to Applicability — Mission failed?

Replica Reliability (Rggp)
1 ‘ 1

P
>
(%]
T
>
B
S 0.5+
[}
o
©
o
>
@)
0

I

Assumption:
perfect voter (R,= 1)

1

= Triple modular redundancy reliability

RTMR =R

= Voting on unreliable hardware?
= Very small — residual error probability?
= Risk analysis — inherently complex (no random error distribution! [4])

Voter

P\\/;\
<
A
//\0 /;
\| /
0.975 -+ <
/7 Q
7R
/ 4
/s
%0095 & %
0.975
R2—0f—3

O Peter Ulbrich — ulbrich@cs.fau.de

Threats to Applicability — Mission failed”?

Replica Reliability (Rggp)
| | |

I

Assumption:
perfect voter (R,= 1)

B
>-
[%p)
s
>
B
S 05
[O)
oc
©
()
>
S
0

1

= Triple modular redundancy reliability

RTMR =R

= Voting on unreliable hardware?
= Very small — residual error probability?

= Risk analysis — inherently complex (no random error distribution! [4])

Voter

— Dealbreaker for software-based TMR

|
I
P\\/:\
&
S
Q/ ///
0.975 -+ <
/7 Q
7R
Sy
A
%0095 & %
0.975
R2—0f—3

O Peter Ulbrich — ulbrich@cs.fau.de

Research AIms

Safety-Critical System

—> Replica 1l
: Majority
w— Interface — Replica 2 Voter
e e Replica 3

[] Isolationdomain [____] Sphere of redundancy (SOR)

O Peter Ulbrich — ulbrich@cs.fau.de 5

Research AIms

Safety-Critical System

—> Replica 1l
. Majority
m— Interface P Replica 2 Voter
s Replica 3

[] Isolationdomain [____] Sphere of redundancy (SOR)

1 Eliminate single points of failure

O Peter Ulbrich — ulbrich@cs.fau.de 5

Research AIms

Safety-Critical System

R =1 R, =1
—> Replica 1l
. Majority
m— Interface P Replica 2 Voter
s Replica 3

[] Isolationdomain [____] Sphere of redundancy (SOR)

Eliminate single points of failure

Constrain residual error probability

O Peter Ulbrich — ulbrich@cs.fau.de

Research AIms

Safety-Critical System

R =1 R, =1
E— Replica 1l
: Majority
m— Interface P Replica 2 Voter
s Replica 3

[] Isolationdomain [____] Sphere of redundancy (SOR)

Eliminate single points of failure

Constrain residual error probability

Dependability as a resource efficient option

O Peter Ulbrich — ulbrich@cs.fau.de

Agenda

m [ntroduction

= The Combined Redundancy approach (CoRed)
m Holistic protection — eliminating single points of failure
m Arithmetic coding
m Dependable voting

= Constraining residual error probability
m From coding theory to application — lessons learned
m Finding appropriate parameters
m Circumvent implementation pitfalls

= Evaluation
m Use case
m Experimental setup
m Fault-injection results

= Conclusion

O Peter Ulbrich — ulbrich@cs.fau.de

CoRed Overview — Holistic Protection Approach

a N
() [}
Ee) . ©
4 W 3 | Replical | 8
a S
Sensor 1 |Encode Decode
J \)
\
4 N
i Mir——=I0l mow R
Sensor 2 |Encode = CoRed Voter § Replica2 [8 CoRed Voter
. RN B _JEN)
_ / e
o
w 4 N z
Sensor 3 Encodej o © W %
e . g Network
o o) (S
g Replica 3 UEJ Interface 2
A\ /

[] isolation domain [[_] Encoded operation [| Sphere of redundancy (SOR)
= The Combined Redundancy Approach (CoRed)

TMR+{

Peter Ulbrich — ulbrich@cs.fau.de

CoRed Overview — Holistic Protection Approach

/N

) — Replica
Sensor =
_
r— il
Sensor|2 - CoRed Voter %eplica) CoRed Voter
—Jit Jull
(]
3
s =z
Sensor e %
) ; Network £
/ Repllca 3 Interface =

\/

[] isolation domain [[_] Encoded operation [| Sphere of redundancy (SOR)

= The Combined Redundancy Approach (CoRed)

MR + { Data-flow encoding

Peter Ulbrich — ulbrich@cs.fau.de

CoRed Overview — Holistic Protection Approach

m

Sensor 2

CoRed Voter

m

= The Combined Redundancy Approach (CoRed)

TMR+{

~
J

Replica 1
Replica 2
Replica 3

CoRed Voter

a

Network
Interface

Remote Node

[] isolation domain [[_] Encoded operation [| Sphere of redundancy (SOR)

Data-flow encoding
Dependable voters

Peter Ulbrich — ulbrich@cs.fau.de

CoRed Overview — Holistic Protection Approach

1 4 N
(9] (]
o . Ee}
4 W 3 | Replical | 8
a i
Sensor 1 |Encode Decode
L J \ Y,
4 N
i Ly || ([B | | p—
Sensor 2 |Encode = CoRed Voter S | Replica2 | 8 CoRed Voter 3
) e 8 1L)
N N
_ J e
o
w 4 N z
Sensor 3 EncodeJ o © W %
= . o Network
o o &
g Replica 3 UEJ Interface 2
_ /

[] isolation domain [[_] Encoded operation [| Sphere of redundancy (SOR)

= The Combined Redundancy Approach (CoRed)
Data-flow encoding
TMR + { Dependable voters

= Holistic protection approach for control applications

= |nput to output protection
1 Reading inputs — 2 Processing — 3 Distributing outputs

Peter Ulbrich — ulbrich@cs.fau.de

Eliminating Input and Output Vulnerabilities

SOR

Y Y’
(Value) — Encode)_ (Encoded Value) > Decode > Y

X X’
(Value) —P Encode)_ (Encoded Value) < Decode > X

= Arithmetic Codes — ANBD Code
= Based on VCP [5]

= Data integrity: Key
= Address integrity: Per variable signature vi=A-v+B+D
= Qutdated data: Timestamp

O Peter Ulbrich — ulbrich@cs.fau.de

Eliminating Input and Output Vulnerabilities

SOR
(VaIIZe) —> Encode
E VAL Decode —» Z=XoY
(V:i{le) —> Encode

= Arithmetic Codes — ANBD Code
Based on VCP [5]

= Data integrity: Key
= Address integrity: Per variable signature vi=Av+B+D
= Qutdated data: Timestamp

= Set of arithmetic operators (+, -, *, =, ...)

m Checksum vs. Arithmetic code (AN code)
= AN Code — Encoded data operations
= Enabler for dependable voter

0 Peter Ulbrich — ulbrich@cs.fau.de 8

CoRed Dependable Voter — Basics

X’

Replical X

Replica2 Y Encoded Voter

Replica3 7 e.g., X' is the winner

Provider ' Encoded Voter Consumer

m CoRed Dependable Voter
® |nput: variants (X’, Y’, Z°)
= Qutput: Equality set (E) and encoded winner (W)
= No decoding necessary

= Control-flow signatures

m Static signature (expected value): Compile-time
— Used as return value E

= Dynamic signature (actual value): Runtime, computed from variants
— Applied to winner W

= Validation: Subsequent check (decode)

O Peter Ulbrich — ulbrich@cs.fau.de 9

Agenda

m [ntroduction

= The Combined Redundancy approach (CoRed)
m Holistic protection — eliminating single points of failure
m Arithmetic coding
= Dependable voting

= Constraining residual error probability
m From coding theory to application — lessons learned
m Finding appropriate parameters
m Circumvent implementation pitfalls

= Evaluation
m Use case
m Experimental setup
m Fault-injection results

= Conclusion

O Peter Ulbrich — ulbrich@cs.fau.de

10

From Coding Theory to Application

Safety-Critical System

R, =1

CoRRkd
m_ Interfase | *

[] Isolation domain

Replica 1

Replica 2

Replica 3

[] SpNergfof redundancy (SOR)

[Mathematics J—

[Think binary

—»[C/Ct+ J—

~N

Know your compiler
& architecture

—{ Assembler]

L Arithmetic coding operations

O Peter Ulbrich — ulbrich@cs.fau.de

11

Constraining residual error probability

Value Space Code Space

® Valid Code Word

.,/E)istance

Encode

Valid Data Word o

Arithmetic Operation

= Coding theory vi=A-v+B+D
= Data word + redundant information = code word
m [Fault detection — distance between code words

Peter Ulbrich — ulbrich@cs.fau.de 12

Constraining residual error probability

Value Space Code Space

® Valid Code Word

.,/E)istance

Encode

Valid Data Word o

Arithmetic Operation

= Coding theory vi=A-v+B+D
= Data word + redundant information = code word
m [Fault detection — distance between code words

i - valid code words
= Residual error probability Py =

1
. “ " possible code words A
= Chance for code-to-code word mutation
= Fundamental property for fault tolerance mathematics

Peter Ulbrich — ulbrich@cs.fau.de 12

Constraining residual error probability

| | | .
::; 103 -\ E
S - 8
© - |
O
9 - N
o
s 107 1 F
" e () :
ﬁ B pre A]
=) - |
S
¢ 107° | E
s | :
Q - i
10_6 ; ;
- | | |]
2 8192 16384 32768 61440
values of A (16-bit constant key)
= Coding theory vi=A-v

= Data word + redundant information = code word
m [Fault detection — distance between code words

valid code words _ l

. i . _
Residual error probability | Piac bossible code words A
= Chance for code-to-code word mutation
= Fundamental property for fault tolerance mathematics

Peter Ulbrich — ulbrich@cs.fau.de

Choosing Keys and Signatures

= Mathematics: prime numbers
= |ntuitively plausible
m | jterature: little help to find suitable As

= Practitioner’s approach: min. Hamming distance
= Distance (d) between code words (# unequal bits)
m (-] bit error detection capabilities

= Brute force
= 1.4x10' experiments for all 16 bit As

A = 58,368 Apin = 2 #errors detectable = 1
58,831 3 2
58,659 6 5

— The bigger the better is misleading!

O Peter Ulbrich — ulbrich@cs.fau.de

13

Consistence with Coding Theory — Mission

~ailed?

—
o
|
w
/ *

—

o

|
N

Ppred | —

—_
o
|

o

Pora (borderline bit errors)

Psdc (residual error probability)

—_
o
|

»

T T T
7 N\
>_L
N————

Ll

[\

8192 16384 32768
values of A (16-bit constant key)

= Fault-simulation — entire fault-space
= Fach and every A, v and fault pattern
= 6.5x10'% experiments for 16 bit As and 1-8 bit soft errors

— Excess of predicted residual error probability

— Violation of predicted fault-detection capabilities

61440

O Peter Ulbrich — ulbrich@cs.fau.de

14

Think Binary

32-bit Machine Word

16-bit Machine Word
Encode

Code Space
/_
: .

= Binary representation of code words
= (Coding theory is unaware of machine word sizes
— Dangerous over- and underflow conditions
m Extended AN code (EAN) implementation

— Compliance with coding theory!

= Improved code reliability (A = 2517)

= Predicted 3x1073
= Common implementation [4] ~1.3x1072
= EAN implementation ~ 1.5x107°

— Improvement by orders of magnitude!

O Peter Ulbrich — ulbrich@cs.fau.de 15

Know your Compiler and Architecture

= On target fault-injection — entire fault space
m [Each and every register, flag, instruction and execution path
= FAIL* fault injection framework [6]

— Violation of predicted fault-detection capabilities

= Architecture specifics
= Absence of compound test-and-branch (e.g., IA32 architecture)
= Control-flow information is stored in single bit
— Redundancy is lost
— Additional range checks

= Undefined Execution Environment
= Zombie values — leaking from caller to voter function
= Compiler laziness leaves encoded values in registers
— [solation assumptions violated
— Cleaning local storage restores isolation

— Tight feedback loop with fault-injection experiments

O Peter Ulbrich — ulbrich@cs.fau.de

16

Agenda

m [ntroduction

= The Combined Redundancy approach (CoRed)
m Holistic protection — eliminating single points of failure
m Arithmetic coding
= Dependable voting

= Constraining residual error probability
m From coding theory to application — lessons learned
m Finding appropriate parameters
= Circumvent implementation pitfalls

= Evaluation
m Use case
m Experimental setup
m Fault-injection results

= Conclusion

O Peter Ulbrich — ulbrich@cs.fau.de

17

Evaluation — Experimental Setup

Flight-Control Application

FAIL* S E
Campaign Manager | ..

— 7 — |
[System Under Test H Hardware Debugger }4 >[Host Computer }

Categories: Fail Silent, Masked,
Hardware Detected, EAN-Code, Control-Flow,
Silent Data Corruption

Outcome: 401,592 experiments
Effective: 67,61/ errors

Peter Ulbrich — ulbrich@cs.fau.de 18

Evaluation — Experimental Results (1)

,—} Replica 1

Interface | Replica2

|—> Replica 3

I Silent Data Corruptions
[Hardware Detected
T EAN-Code Detected
Il Masked

= Redundant execution campaign (Interface)

Distribution of Effective Faults

90 %

80 % -

70 % -

60 % -

50 %

40 % |-

30 % -

20 % -

10 % +--

0%

m Total: ~45,000 Errors

Unprotected

Plain TMR

CoRed TMR

O Peter Ulbrich — ulbrich@cs.fau.de

19

Evaluation — Experimental Results (1)
——P| Replical 90 %

Interface _> Replica 2 80 % e st

|—> Replica 3 70 9% 1- I R AR B

60 % < |-l 1 W e

50 % —|--Q--4-1 o

40% -1 e

30% -1 [

Distribution of Effective Faults

I Silent Data Corruptions
[1 Hardware Detected

20 % + |-

[EAN-Code Detected 10% -0
Il Masked
0 % - | |
= 2 35 O =z =z ¥
<
T I g 8 I & g
Unprotected Plain TMR CoRed TMR

= Redundant execution campaign (Interface)

m Total: ~45,000 Errors
Unprotected: Suffers from 3,622 corruptions!

O Peter Ulbrich — ulbrich@cs.fau.de 19

Evaluation — Experimental Results (1)

—>

Replica 1

Interface

_>

Replica 2

L

Replica 3

I Silent Data Corruptions
[Hardware Detected
T EAN-Code Detected
Il Masked

= Redundant execution campaign (Interface)

Distribution of Effective Faults

90 %

80 % -

70 %

60 % —

50 % -

40 %

30 % -

20 % -

10 % +--

0%

m Total: ~45,000 Errors

Unprotected: Suffers from 3,622 corruptions!

Unprotected

= [MR: Suffers from 71 corruptions!

Plain TMR

CoRed TMR

O Peter Ulbrich — ulbrich@cs.fau.de

19

Evaluation — Experimental Results (1)

,—} Replica 1

Interface | Replica2

|—> Replica 3

I Silent Data Corruptions
[Hardware Detected
T EAN-Code Detected
Il Masked

= Redundant execution campaign (Interface)

Distribution of Effective Faults

90 %

80 % -

70 %

60 % —

50 % -

40 %

30 % -

20 % -

10 % +--

0%

m Total: ~45,000 Errors

Unprotected: Suffers from 3,622 corruptions!

Unprotected

= [MR: Suffers from 71 corruptions!

= CoRed: Remaining corruptions are covered — O corruptions

Plain TMR

CoRed TMR

O Peter Ulbrich — ulbrich@cs.fau.de

19

Evaluation — Experimental Results (2)

90 %

H I
Replica 1 ﬁ § é
Replica2 > Voter e i T T e
Replica 3 vCo)73 NS I (S AU 1 S
B0 96 ——-----eor-eo- - eneeseneesneesnone oo e
50 % -y o e
i e aneeUIIIIEE RN CESSRSSENS B R TeTTI
B Silent Data Corruptions SR i 1 [i AN
[] Hardware Detected
20% -
[EAN-Code Detected
[Control-flow Monitoring 10% 1| | (e R T
I Masked
0 % | | |
O = pd S x @) = = = 5
3 T § 5 & 8 % 8 5 8
Plain Voter CoRed Encoded Voter

= Voter campaign

O Peter Ulbrich — ulbrich@cs.fau.de

Evaluation — Experimental Results (2)

90 %

R |' 1 9\ 8
eplica ﬁ gt
Replica2 |9 Voter L e] R
Replica 3 | 4 200 4L N
I | s FES
50 %
40 % +
B Silent Data Corruptions 30 % 1
[Hardware Detected 00 % -
[EAN-Code Detected
[Control-flow Monitoring 10 % -
BN Masked
0% -
=
I
. Plain Voter
= Voter campaign
= Plain voter:
Total ~11,000 2,465 masked 7,245 retry

CoRed Encoded Voter

1,223 corruptions

O Peter Ulbrich — ulbrich@cs.fau.de

20

Evaluation — Experimental Results (2)

Replica 1 ﬁ

Replica2 [Voter

Replica 3 4

I Silent Data Corruptions
[Hardware Detected
[EAN-Code Detected
[Control-flow Monitoring
BN Masked

= Voter campaign
= Plain voter:;
Total ~11,000

90 %

80 % -

70 % ~--ooneeeeeed

60 % +

50 %

40 % -

30 % -

20 % +

10 % +

0%

=
T

P

2,465 masked

m CoRed Dependable Voter:

Total ~26,000

1,228 masked

lain Voter

7,245 retry

24,682 retry

1,223 corruptions

O corruptions

O Peter Ulbrich — ulbrich@cs.fau.de

20

Evaluation — Experimental Results (2)

Replica 1 ﬁ

Replica2 [» Voter

Replica 3 4

90 %

80 % -2 H ——
Y40 K Y) Y H 777777

I Silent Data Cor

[EAN-Code Detd
[1 Control-flow Md
I Masked

= Voter campail_

Evaluation — Overhead

= Overhead Analysis

14Copter Flight-Control: 7.1% overhead
(compared to plain TMR)

[] Hardware Deteq - Se|ectivity

|14Copter system CPU utilisation: 41%
— Full replication impossible, CPU: 120%

Mission-critical replication of flight control
— possible with CoRed, CPU: 60%

= Plain voter:
Total ~11,000

= CoRed Voter:
Total ~26,000

2,465 masked 7,245 retry 1,223 corruptions

1,228 masked 24,682 retry 0O corruptions

0 Peter Ulbrich — ulbrich@cs.fau.de

21

Conclusion

Safety-Critical System

—» Replica 1l
NUNJCI—— Interface —P Replica 2 Majority
Voter
e e Replica 3

V1 Eliminate single points of failure [1]

O Peter Ulbrich — ulbrich@cs.fau.de

22

Conclusion

Safety-Critical System

EAN

Decode Replica 1 Encode
Decode Replica 2 Encode
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m Key feature: CoRed Dependable Voter

Actuators

0 Peter Ulbrich — ulbrich@cs.fau.de

22

Conclusion

Safety-Critical System

Decode Replica 1 Encode
EAN :
Sensors . Decode Replica 2 Encode Actuators
Coding
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m Key feature: CoRed Dependable Voter

V1 Constrain residual error probability [2]
= Parameterisation guidelines: choosing the right A
= Binary aware implementation: complying with coding theory
= Factor 1000 improvement

V1 Dependability as a resource efficient option
= Only 7.1% overhead (flight control example)

0 Peter Ulbrich — ulbrich@cs.fau.de 22

Conclusion

Safety-Critical System

Decode Replica 1 Encode
EAN .
Sensors . Decode Replica 2 Encode Actuators
Coding
Decode Replica 3 Encode

V1 Eliminate single points of failure [1]
= TMR + Encoding: Combined Redundancy approach
m Key feature: CoRed Dependable Voter

V1 Constrain residual error probability [2]
= Parameterisation guidelines: choosing the right A
= Binary aware implementation: complying with coding theory
= Factor 1000 improvement

V1 Dependability as a resource efficient option
= Only 7.1% overhead (flight control example)

— Bullet-proof software-based fault tolerance is possible

0 Peter Ulbrich — ulbrich@cs.fau.de 22

http://wwwd.cs.fau.de/Research/CoRed

Tha

you!

(1) Ulbrich, Peter; Hoffmann, Martin; Kapitza, Rudiger; Lohmann, Daniel; Schmid, Reiner; Schroder-Preikschat,
Wolfgang: “Eliminating Single Points of Failure in Software-Based Redundancy”, Proceedings of the 9th
European Dependable Computing Conference (EDCC '12), 2012.

(2) Hoffmann, Martin; Ulbrich, Peter; Dietrich, Christian; Schirmeier, Horst; Lohmann, Daniel; Schroder-Preikschat,
Wolfgang: “A Practitioner's Guide to Software-based Soft-Error Mitigation Using AN-Codes*, Proceedings of the
15th IEEE International Symposium on High Assurance Systems Engineering (HASE '14), 2014,

References

(3) P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modelling the effect of technology
trends on the soft error rate of combinational logic,” in DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks

(4) Edmund B. Nightingale, John R Douceur, and Vince Orgovan, Cycles, Cells and Platters: An
Empirical Analysis of Hardware Failures on a Million Consumer PCs, in Proceedings of EuroSys 2011

(5) Forin, “Vital coded microprocessor principles and application for various transit systems”, 1989

(6) Schirmeier, Horst ; Hoffmann, Martin ; Kapitza, Rudiger ; Lohmann, Daniel ; Spinczyk, Olaf :
“FAIL: Towards a Versatile Fault-Injection Experiment Framework”, 25th International Conference on
Architecture of Computing Systems, 2012

O Peter Ulbrich — ulbrich@cs.fau.de 24

