
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

In the Tension of Software Redundancy and
Variability
Sandro Schulze (COW Veteran), TU Braunschweig, COW #29
Thanks to: David Wille, Sönke Holthusen, Ina Schaefer (TU
Braunschweig), Olaf Lessenich, Sven Apel (University of Passau)

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 2

What is this talk about?
“…some disciplines aim at introducing
redundancy, others at exploiting it, and others
still at avoiding it.” (from the COW #29 web page)

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 3

Questions…to be answered
Why does redundancy exists?

Any good reasons? On purpose?

Where does it come from?
Beyond plain copy&paste?

What does it tell us (under the hood)?

What is redundancy really used for…and why?

Does your mother know, you are here?
Does anybody know about all that redundancy?

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 4

An Example of Software Evolution
http://www.levenez.com/unix/!

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 5

Clone-and-Own

t0 t1 t2 t3

Versions evolve….

…and become variants

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 6

Patterns of Redundancy

Hardware Variation
Platform Variation

API/Library Protocols
Algorithmic Idioms

WCRE 2006
ESE Journal 2008

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 7

Patterns of Redundancy

Reliability, efficient evolution, knowledge of code base
maintainability, bug propagation, back propagation (see Hemel and
Koschke, WCRE 2012 for embedded linux)

Replicate and Specialize
Workarounds

Reliability, efficient evolution, knowledge

Maintainability, bug propagation, (missing) back
propagation

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 8

10000
features

Redundancy introduces Variability

250+
distributions http://www.distrowatch.com!

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 9

Unleashing Redundancy

-  How to add semantics to redundancy?
-  From where to obtain domain knowledge?

Provides
Data

Provides
Information

How to get
there?

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 11

Forking & Evolution

System A

System B

changes

changes

Which parts evolve together/independent across systems?

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 12

Analyzing Inter-System Clone Evolution

t1:

t2:

t3:

t4:

t5:

t
i
m
e

Legend:

clone connection

clone fragment

clone class

system 1

system 2

t0

t1

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 13

Analyzing Inter-System Clone Evolution

vs.

simplicity

precision

Gives you a fast overview
Gives you regions of interest

NO information about features
NO information for merging the code base of systems

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 14

Semi-Structured Merge

Analyse von Produktvariantenevolution

Wie schwer ist das Zusammenführen?

FOSD-Tre↵en 2013 Leßenich • Universität Passau 10 / 20

Apel et al., ASE 2012

How much does
this cost?

Analyse von Produktvariantenevolution

Was ist schwerer?

FOSD-Tre↵en 2013 Leßenich • Universität Passau 15 / 20

Analyse von Produktvariantenevolution

Was ist schwerer?

1⇥ n

2
Zeilen geändert

n

2
⇥ 1 Zeile geändert

FOSD-Tre↵en 2013 Leßenich • Universität Passau 14 / 20

Analyse von Produktvariantenevolution

Was ist schwerer?

1⇥ n

2
Zeilen geändert

n

2
⇥ 1 Zeile geändert

FOSD-Tre↵en 2013 Leßenich • Universität Passau 14 / 20

How difficult is it
to merge?

Structured Diff on abstract syntax trees (AST)

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 15

Models are software….too

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 16

Model-Based Development Process

1

Out1Product

1

Gain

1
s

Integrator

1

In3

2

In4

Z-1

Delay

1
s

Integrator1

1

Out1Product

1

Gain

1
s

Integrator

1

In3

2

In4

Z-1

Delay

1
s

Integrator1

1

Out1

1

In1

Product

2

In2

Z-1

Delay

1
s

Integrator

1
s

Integrator Limited

Transport Delay

Variant 1

Variant 2

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 17

The Model Zoo

clone-and-own

clone-and-own

clone-
and-own

clone-and-own

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 18

Towards A Family of Models
Domain

Engineering

Application
Engineering

150%
Model T

T

t1

t2

t3

M
M' M'' M'''

Family Mining Domain
Change

Evolution

Application
Change

Change
Propagation

Evolution
-  Difficult to maintain
-  Propagating changes à which

models?
-  Replication usually not documented

Commonalities Differences

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 19

Mining Model Variability

C

C

C

CC

C C C

Intermediate
Representation

AnalysisImport Family Model
(annotated 150% model)

ExportEMFCompare

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 20

Beyond Model Diff & Model Clone Detection

C1I1 O1C2

C3I1 O1C4

C1I1 O1C4

C1

I1 O1C3 C4

C1 C4

I1

I1

I1

O1

O1

O1

C2

Differences and/or
similarities detected
by lots of existing tools

Beyond that….

…we add semantics
…put model elements
in a family context

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 21

Context & Interfaces

1

Out1Product

1

Gain

1
s

Integrator

1

In3

2

In4

Z-1

Delay

1
s

Integrator1

Context à model components,
connected to component of interest

Interfaces à IN and OUT ports of
component of interest

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 22

Alternatives
Variant 1

C1 ⊕ ➜

Variant 1

C2

Merge 1+2

C2C1

⊕ ➜

Variant 1

MV/VS C1

V1 V2

Variant 2

C2

Merge 1+2

C2

MV/VS C1

V1 V2

Different,
mandatory
components

Variable sub-
system and
mandatory
component

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 23

Optional Components
Variant 1

C1

Variant 2 Merge 1+2

C1?⊕ ➜

⊕
Variant 2

C2

Variant 1

C1?

Merge 1+2

C2C1

?

➜

Optional and
mandatory
component

An optional
alternative ;-)

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 24

Interface Variability

Attribute Percentage Multiplier

name 5% {0, 1}

datatype 75% {0, 1}

src 10% Similarity of the sources

dst 10% Similarity of the destinations

Table 2: Metric for connectors

models, which we use as an example in this section. When
parsing the models for the comparison, we assign a unique
identifier to each component and connector. We depict these
identifiers for our exemplary models by the dashed lines and
the connected identifiers (i.e., i0, i1, . . . , i6 and j0, j1, . . . ,
j4, respectively).

After labeling both models, we select the model with the
highest number of components as our base model (i.e., in our
example Model 2). This way, we assure that potential op-
tional components are not ignored, which could be possible
when selecting the model with the lowest number. The next
step is to create two lists with the start components of both
models (i.e., i0, i2 and i3, i5). These start components are
the first components after the models’ inports and provide
initial access to the model. Thus we can guarantee that we
walk through the whole data-flow when selecting them as a
start for our comparison. Next, we select one of the start
components from the base model (e.g., component i3) and
compare it with all other start components from the other
model (i.e., component i0 and i2).

i0 i1

i2

j0

j1

(a) Model 1

i3 i4

i5

j2

j3

i6j4

(b) Model 2 (base model)

Figure 5: Example models used to explain the approach

In Figure 6a, we show how the comparisons for compo-
nents are documented in a compare tree. A compare tree is
a special data structure, which we use to represent the com-
parisons and store the calculated similarity values. Each
compare tree can contain di↵erent paths, which represent
di↵erent matchings. The nodes of the tree are linked with
directed edges, whereas the edges always represent exactly
one comparison of a component from the base model (i.e., in
our example Model 2) with a component from the compared
model (i.e., in our example Model 1) and store their similar-
ity. A node consists of multiple circles. Dashed circles repre-
sent components from the base model, whereas solid circles
represent components from the compared model. The node’s
solid circles are always part of the previous comparison n�1
and the connected dashed circles represent the components
of the next comparison n (e.g., in the left branch in Fig-
ure 6a, component i0 is part of a di↵erent comparison than
component i4). As the node’s solid circle is always part

of the last comparison, the root node’s solid circle is null,
because there cannot be any previous comparisons. A com-
parison of two models can generate multiple trees, because
in certain cases (explained further below) a generated tree
does not necessarily contain the best matching between two
models.

(a) Compare tree for the

components

(b) Compare tree for the

connectors

Figure 6: Examples for the compare trees

In order to select the components for the next comparison,
we take a look at the last compared component from the base
model and analyze its in- and outgoing connections. Every
linked component is a possible candidate for a new compari-
son. For example, after starting in component i3 we are able
to reach component i4 via connector j2. The same analysis
is applied for the last component from the compared model.
This way, we get possible candidates for the comparison with
the components from the base model. For example, we can
reach component i1 via the connection j0 from component
i0. With the newly discovered components, we can create a
new comparison (e.g., component i4 is compared with i1).
The newly discovered components are only candidates, as
they could already be used in a previous comparison. For
example, the analysis of possible candidates in component
i4 returns the components i3 and i5. As component i3

is already used in a previous comparison, we do not take
it into account during following comparisons. When com-
paring models with a di↵erent number of components it is
possible, that there are no new components discovered in the
compared model. Consequently, the remaining components
from the base model are compared with null, resulting in a
similarity of 0%.
Generally, there could be more than one component linked

with the analyzed components. Hence, there are two possi-
ble types of branches in compare trees. If there is more than
one possible base model component for the next comparison,
we denote the results as shown in Figure 7a. For each of the
discovered components a new dashed circle is created and
each of the discovered components from the other model is
compared with them (cf. the comparisons i4 , i6 and i5

, i6 in Figure 7a). Likewise, there could be more than
one candidate component in the compared model. In this
case, we connect all of them to the compared base model
component (cf. the comparisons i4 , i5 and i4 , i6 in

software product lines (SPLs). The pure::variants software
is a plugin created for Eclipse2 and allows to create both
model types using its API.

In Figure 2, we present a small example for a family model.
It consists of two mandatory elements C0 and C1 (indicated
by the “!”), an optional element C4_m2 (indicated by the
“?”) and a mandatory VariantSubsystem containing the two
alternatives C2_m1 and C3_m2 (indicated by the “,”).

Figure 2: Example for a family model

These di↵erent elements can contain further implemen-
tation-specific information (e.g., the block type for block-
oriented languages) and consequently show how a specific
problem could be solved. By selecting and deselecting any of
the non-mandatory elements, it is possible to create di↵erent
variants of a product.

3. MOTIVATING EXAMPLE
Deciding whether two (partial) models are similar enough

in order to be interchangeable is usually easy when these
models have the same interfaces (i.e., the same number of
in- and outports). In Figure 3, we show an example con-
sisting of two models that could be exchanged because both
have the same interface (one inport and one outport). The
only di↵erence between these models are the two blocks C0
(Delay) and C1 (Integrator).

However, there are certain cases where making this deci-
sion is non-trivial. For example, some subsystems are di↵er-
ent according to their interfaces, but their main functionality
is basically the same. In Figure 4, we show an example with
two models, di↵ering in their number of outports (one out-
port vs. two outports) and components (three components
vs. four components). Assuming component C0 and C1 are
the same in both models and the only di↵erence between
component C2 and C3 is the additional outport, we argue
that these models are similar. Three out of four components
have the same functionality and only the additional compo-
nent C4 di↵erentiates the models. Hence, the two models
basically realize the same functionality. A possible use case
for this example may be an additional value that needs to
be calculated in component C4 or a logging functionality re-
alized by component C4. Consequently, the two models are
fairly similar although their interfaces di↵er.

We need to find an approach, which allows to compare dif-
ferent models stored in our XML-based ADL and generate

2http://www.eclipse.org/

(a) Model 1

(b) Model 2

Figure 3: Interchangeable models

(a) Model 1 (b) Model 2

Figure 4: Motivating example

family models based on the results. The approach should
analyze the models by comparing all their elements (i.e.,
components and connectors) and determine their common-
alities (i.e., mandatory parts) and di↵erences (i.e., alterna-
tive and optional parts). Furthermore, the approach should
pay attention to the models’ interfaces, in order to allow us
to apply family model mining on models, which realize a
similar functionality, but have di↵ering interfaces.

4. DETERMINE MODEL VARIABILITY
In order to compare two models with each other, a met-

ric is needed to calculate the overall similarity value of the
compared models. This metric weights the di↵erent parts of
the models according to their importance for the function-
ality. But most importantly, the metric is utilized to get the
required information to generate family models. In this sec-
tion we explain our metric and how we apply it to compare
models with varied interfaces to create family models.

4.1 Measuring Model Similarity
In order to ease the comparison of two models m

0

and m
1

and to calculate their similarity values, we first define the
overall structure of the considered models:

Definition 1. A model M = (name, S, CP, CN) is de-

fined by a name, a set of subsystems S, a set of components

CP, and a set of connectors CN (including the connectors of

the subsystems). Each subsystem Si = (namei, Ss, CPs) 2 S
has a name and consists of other subsystems Ss ✓ S and

components CPs ✓ CP . A component CPi = (namei,
functioni, Ii, Oi) 2 CP has a name, a function (e.g., sum

or gain), and two sets Ii and Oi, which define the com-

ponent’s in- and outports. A connector CNi = (namei,
datatypei, srci, dsti) 2 CN is defined by its name, datatype

(e.g. integer) and src, dst 2 CP , where src and dst are the

components that are connected by the connector.

For developing the metric, we analyzed, which parts of
a model primarily contribute to its functionality. Models
consist of components and connectors, so we only have to
distinguish between these two elements. Since subsystems
are only used for structural purposes (e.g., to use hierarchies
or to allow reuse of a certain functionality) and do not influ-
ence the functionality directly, we do not need to take them
into account separately. The components define what func-
tions are applied and consequently, how data is processed.
In contrast, connectors only allow to exchange data between
the components, but still have impact on the functionality,
because any additional connector adds new data flow and
can change the way data is processed. As a result, we weight
the importance of components to connectors with a ratio of
2:1.

Attribute Percentage Multiplier

name 5% {0, 1}

datatype 75% {0, 1}

src 10% Similarity of the sources

dst 10% Similarity of the destinations

Table 2: Metric for connectors

models, which we use as an example in this section. When
parsing the models for the comparison, we assign a unique
identifier to each component and connector. We depict these
identifiers for our exemplary models by the dashed lines and
the connected identifiers (i.e., i0, i1, . . . , i6 and j0, j1, . . . ,
j4, respectively).

After labeling both models, we select the model with the
highest number of components as our base model (i.e., in our
example Model 2). This way, we assure that potential op-
tional components are not ignored, which could be possible
when selecting the model with the lowest number. The next
step is to create two lists with the start components of both
models (i.e., i0, i2 and i3, i5). These start components are
the first components after the models’ inports and provide
initial access to the model. Thus we can guarantee that we
walk through the whole data-flow when selecting them as a
start for our comparison. Next, we select one of the start
components from the base model (e.g., component i3) and
compare it with all other start components from the other
model (i.e., component i0 and i2).

(a) Model 1

(b) Model 2 (base model)

Figure 5: Example models used to explain the approach

In Figure 6a, we show how the comparisons for compo-
nents are documented in a compare tree. A compare tree is
a special data structure, which we use to represent the com-
parisons and store the calculated similarity values. Each
compare tree can contain di↵erent paths, which represent
di↵erent matchings. The nodes of the tree are linked with
directed edges, whereas the edges always represent exactly
one comparison of a component from the base model (i.e., in
our example Model 2) with a component from the compared
model (i.e., in our example Model 1) and store their similar-
ity. A node consists of multiple circles. Dashed circles repre-
sent components from the base model, whereas solid circles
represent components from the compared model. The node’s
solid circles are always part of the previous comparison n�1
and the connected dashed circles represent the components
of the next comparison n (e.g., in the left branch in Fig-
ure 6a, component i0 is part of a di↵erent comparison than
component i4). As the node’s solid circle is always part

of the last comparison, the root node’s solid circle is null,
because there cannot be any previous comparisons. A com-
parison of two models can generate multiple trees, because
in certain cases (explained further below) a generated tree
does not necessarily contain the best matching between two
models.

(a) Compare tree for the

components

(b) Compare tree for the

connectors

Figure 6: Examples for the compare trees

In order to select the components for the next comparison,
we take a look at the last compared component from the base
model and analyze its in- and outgoing connections. Every
linked component is a possible candidate for a new compari-
son. For example, after starting in component i3 we are able
to reach component i4 via connector j2. The same analysis
is applied for the last component from the compared model.
This way, we get possible candidates for the comparison with
the components from the base model. For example, we can
reach component i1 via the connection j0 from component
i0. With the newly discovered components, we can create a
new comparison (e.g., component i4 is compared with i1).
The newly discovered components are only candidates, as
they could already be used in a previous comparison. For
example, the analysis of possible candidates in component
i4 returns the components i3 and i5. As component i3

is already used in a previous comparison, we do not take
it into account during following comparisons. When com-
paring models with a di↵erent number of components it is
possible, that there are no new components discovered in the
compared model. Consequently, the remaining components
from the base model are compared with null, resulting in a
similarity of 0%.
Generally, there could be more than one component linked

with the analyzed components. Hence, there are two possi-
ble types of branches in compare trees. If there is more than
one possible base model component for the next comparison,
we denote the results as shown in Figure 7a. For each of the
discovered components a new dashed circle is created and
each of the discovered components from the other model is
compared with them (cf. the comparisons i4 , i6 and i5

, i6 in Figure 7a). Likewise, there could be more than
one candidate component in the compared model. In this
case, we connect all of them to the compared base model
component (cf. the comparisons i4 , i5 and i4 , i6 in

Attribute Percentage Multiplier

name 5% {0, 1}

datatype 75% {0, 1}

src 10% Similarity of the sources

dst 10% Similarity of the destinations

Table 2: Metric for connectors

models, which we use as an example in this section. When
parsing the models for the comparison, we assign a unique
identifier to each component and connector. We depict these
identifiers for our exemplary models by the dashed lines and
the connected identifiers (i.e., i0, i1, . . . , i6 and j0, j1, . . . ,
j4, respectively).

After labeling both models, we select the model with the
highest number of components as our base model (i.e., in our
example Model 2). This way, we assure that potential op-
tional components are not ignored, which could be possible
when selecting the model with the lowest number. The next
step is to create two lists with the start components of both
models (i.e., i0, i2 and i3, i5). These start components are
the first components after the models’ inports and provide
initial access to the model. Thus we can guarantee that we
walk through the whole data-flow when selecting them as a
start for our comparison. Next, we select one of the start
components from the base model (e.g., component i3) and
compare it with all other start components from the other
model (i.e., component i0 and i2).

(a) Model 1

(b) Model 2 (base model)

Figure 5: Example models used to explain the approach

In Figure 6a, we show how the comparisons for compo-
nents are documented in a compare tree. A compare tree is
a special data structure, which we use to represent the com-
parisons and store the calculated similarity values. Each
compare tree can contain di↵erent paths, which represent
di↵erent matchings. The nodes of the tree are linked with
directed edges, whereas the edges always represent exactly
one comparison of a component from the base model (i.e., in
our example Model 2) with a component from the compared
model (i.e., in our example Model 1) and store their similar-
ity. A node consists of multiple circles. Dashed circles repre-
sent components from the base model, whereas solid circles
represent components from the compared model. The node’s
solid circles are always part of the previous comparison n�1
and the connected dashed circles represent the components
of the next comparison n (e.g., in the left branch in Fig-
ure 6a, component i0 is part of a di↵erent comparison than
component i4). As the node’s solid circle is always part

of the last comparison, the root node’s solid circle is null,
because there cannot be any previous comparisons. A com-
parison of two models can generate multiple trees, because
in certain cases (explained further below) a generated tree
does not necessarily contain the best matching between two
models.

(a) Compare tree for the

components

(b) Compare tree for the

connectors

Figure 6: Examples for the compare trees

In order to select the components for the next comparison,
we take a look at the last compared component from the base
model and analyze its in- and outgoing connections. Every
linked component is a possible candidate for a new compari-
son. For example, after starting in component i3 we are able
to reach component i4 via connector j2. The same analysis
is applied for the last component from the compared model.
This way, we get possible candidates for the comparison with
the components from the base model. For example, we can
reach component i1 via the connection j0 from component
i0. With the newly discovered components, we can create a
new comparison (e.g., component i4 is compared with i1).
The newly discovered components are only candidates, as
they could already be used in a previous comparison. For
example, the analysis of possible candidates in component
i4 returns the components i3 and i5. As component i3

is already used in a previous comparison, we do not take
it into account during following comparisons. When com-
paring models with a di↵erent number of components it is
possible, that there are no new components discovered in the
compared model. Consequently, the remaining components
from the base model are compared with null, resulting in a
similarity of 0%.
Generally, there could be more than one component linked

with the analyzed components. Hence, there are two possi-
ble types of branches in compare trees. If there is more than
one possible base model component for the next comparison,
we denote the results as shown in Figure 7a. For each of the
discovered components a new dashed circle is created and
each of the discovered components from the other model is
compared with them (cf. the comparisons i4 , i6 and i5

, i6 in Figure 7a). Likewise, there could be more than
one candidate component in the compared model. In this
case, we connect all of them to the compared base model
component (cf. the comparisons i4 , i5 and i4 , i6 in

Compare trees for…

Components Connectors

Wille et al., MAPLE 2013

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 25

Putting the Pieces Together

Domain
Engineering

Application
Engineering

150%
Model T

T

t1

t2

t3

M
M' M'' M'''

Family Mining Domain
Change

Evolution

Application
Change

Change
Propagation

Evolution

Redundancy Family Model

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 26

Summary

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 28

Questions…partly answered
Why does redundancy exists?

Where does it come from?

What does it tell us (under the hood)?
It’s much (all?) about variability!!!

Does your mother know, you are here?

At least, she does not know the whole truth!!! But there’s more…
…compositional testing and verification

…propagating patches/changes
…modular reasoning

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 29

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 6

Clone-and-Own

t0 t1 t2 t3

Versions evolve….

…and become variants

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 9

10000
features

Redundancy introduces Variability

250+
distributions http://www.distrowatch.com!

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 13

Analyzing Inter-System Clone Evolution

t1:

t2:

t3:

t4:

t5:

t
i
m
e

Legend:

clone connection

clone fragment

clone class

system 1

system 2

t0

t1

Sandro Schulze | Redundancy vs. Variability | COW #29 | Slide 19

Towards A Family of Models
Domain

Engineering

Application
Engineering

150%
Model T

T

t1

t2

t3

M
M' M'' M'''

Family Mining Domain
Change

Evolution

Application
Change

Change
Propagation

Evolution
-  Difficult to maintain
-  Propagating changes ! which

models?
-  Replication usually not documented

Commonalities Differences

