
Software Design Diversity – from 

Conceptual Models to Practical 

Implementations 

Dr Peter Popov 

Centre for Software Reliability  

City University London 

ptp@csr.city.ac.uk 

College Building, City University London EC1V 0HB 

Tel: +44 207 040 8963 (direct) 

 +44 207 040 8420 (sec. CSR) 



18/11/2013 29th CREST Open Workshop  

Software Redundancy 

2 

Software design diversity: Why 

• The idea of redundancy (i.e. multiple software 

channels) for increased reliability/availability is 

not new:  

– has been known for a very long time and used actively in 

many application domains.  

• simple redundancy does not work with software  

– software failures are deterministic: whenever a software 

fault is triggered a failure will result 

– software does not ware out 

– software channels work in parallel, but must be: 

• different by design (design diversity) 

• work on (slightly) different inputs/demands (data diversity) 



3 

Software design diversity (2) 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Surprisingly, various homogeneous fail-over schemes dominate the 

market of FT ‘enterprise’ applications. These are ineffective! 

• U.S.-Canada Power System Outage Task Force, Final Report on the 

August 14th (2003) Blackout in the United States and Canada 

– https://reports.energy.gov/BlackoutFinal-Web.pdf  

EMS Server Failures. FE’s EMS system includes several server nodes that perform the 

higher functions of the EMS. Although any one of them can host all of the functions, FE’s 

normal system configuration is to have a number of host subsets of the applications, with one 

server remaining in a “hot-standby” mode as a backup to the others should any fail. At 14:41 

EDT, the primary server hosting the EMS alarm processing application failed, due either to the 

stalling of the alarm application, “queuing” to the remote EMS terminals, or some combination 

of the two. Following preprogrammed instructions, the alarm system 

application and all other EMS software running on the first server 

automatically transferred (“failedover”) onto the back-up server. 

However, because the alarm application moved intact onto the backup 

while still stalled and ineffective, the backup server failed 13 minutes 

later, at 14:54 EDT. Accordingly, all of the EMS applications on these two servers stopped 

running.(Part 2, p 32)  



5 

Examples: diverse, modular redundancy 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• “natural” 1-out-of-2 scheme (e.g. communication, 

alarm, protection) 

Channel 1 

Channel 2 

inputs 

Parallel (OR,  

1-out-of-2) 

arrangements 

inputs 

Channel 1 

Channel 2 

Channel 3 

Bespoke  

adjudicator 

System 

output 

•    Voted system (e.g. control) 



6 

Examples: primary/checker systems 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Primary 

software 

checker 

Computation  

Input 
System  

output 

Approved/  

rejected 

•  Checker will usually be bespoke (possibly on OTS platform) 

•  If simpler than primary high quality is affordable 

•  Safety kernel idea can be implemented here 



7 

Achievement vs. Assessment 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Cost-benefit analysis is always needed: 

– design diversity is more expensive than non-diverse 

redundancy, or solutions without redundancy 

• especially in 80s, when the area was actively researched 

– what are the benefits of design diversity, how much one 

gains from diverse redundancy? 

• Assessing the benefits is a problem much harder for 

(diverse) software than for hardware 

• NVP ‘implicitly’ assumed independence of failures of 

the channels 

– huge controversy, very entertaining exchange in the IEEE 

Transaction on Software Engineering in mid 80s. 



8 

Is failure independence realistic? 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Knight and Leveson experiment (FTCS-15, 1985 and 

TSE, 1986) 

– 27 software versions developed to the same specification by 

students in two US Universities 

– tested on 1,000,000 test cases and the versions’ reliability 

‘measured’ 

– Coincident failures observed much more frequently than 

independence would suggest 

• i.e. refuted convincingly the hypothesis of statistical independence 

between the failures of the independently developed versions!  

• Eckhardt & Lee model (TSE, 1985) 

– probabilistic model demonstrates why independently  

developed versions will not fail independently 



9 

Eckhardt and Lee model 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Model of software development 

– population of possible versions ={1, 2...} 

– probabilistic measure S(), i.e. S(i) is the 

probability that version i will be developed 

• Demand space modelled probabilistically 

– D={x1, x2...} - demand space,  

– Q() probabilistic measure: the likelihood of 

different demands being chosen in operation. 






.,0

;,1
),(

xonfailnotdoesprogramif

xonfailsprogramif
x








10 

Eckhardt and Lee model (2) 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• The random variable (,X) represents the 

performance of a random program on a random 

demand: this is a model for the uncertainty both in 

software development and usage. 

 

  is the probability that a randomly chosen program fails for a particular 

demand x (‘difficulty’ function).  

• (X) is a random variable 

– upper case X represents a random demand, i.e. chosen in 

operation at random according to Q() 

 ),()().,()( xSxx
S

 






11 

Eckhardt and Lee model (3) 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

     

  .)()(

)()()()(

)()()(),(),(

)1),(),(()(

2

222

2121

2121

XonfailsPVar

VarxQx

xQSSxx

XXPXonfailbothandP

F

F












 







There is no reason to expect that independently developed 

software versions will fail independently on a randomly chosen 

demand, X, even though they fail conditionally independently on a 

given demand, x. 



12 

Littlewood and Miller model 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• A generalisation of the EL model for the case of 

‘forced diversity’ 

– the development teams are kept apart but also forced to 

use different methodologies, e.g. programming 

languages, different algorithms, etc. 

• Model of forced diversity 

– probabilistic measures SA() and SB() for development 

methodologies, A and B.  

• a version (with a specific set of scores,(,x)) may be very likely 

with methodology A and very unlikely with methodology B 

– The model in every other aspect is identical to the EL 

model. 



13 

Littlewood and Miller model (2) 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

).()(),(

),(

XonfailsPXonfailsPCov

XonfailsXonfailsP

BABA

BA





• Since covariance can be negative, then with forced 

diversity one may do even better than the 

unattainable independence under the EL model 

• Littlewood & Miller in their TSE paper 1989 applied 

their model to Knight & Leveson’s data and 

discovered negative covariance. 

– For them the two methodologies were represented by the 

programs developed by students from different universities. 



14 

Limitations of EL and LM models 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Eckhardt and Lee (EL) and Littlewood and Miller (LM) 

models deal with a ‘snapshot’ of the population of 

versions 

– extended by allowing the versions to evolve through their being 

tested and fixing the detected faults 

• These are models ‘on average’  

– extended by looking at models of a particular pair of versions 

(models ‘in particular’). 

– Not covered here. The models are similar, but not identical. 



15 

A new model ‘on average’ 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

  

version i 

no testing 

version i 

tested with  j 

Testing: 

- test suite (a given test generation procedure  

may be instantiated differently, i.e. different sets of test 

cases can be generated) 

    - independently generated for each channel of the 

system; 

    - the same test suite used; 

- adjudication (oracle: perfect/imperfect, back-to-back) 

- fault-removal (perfect/imperfect, new faults?) 

version i 

tested with  k 



16 

Modelling the testing process 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• ={t1,t2,...} with M() , i.e. M(t) = P(T=t) 

• Extended score function: 






.,0

,,1
),,(

xonfailnotdoestwithtestedif

xonfailstwithtestedif
tx






),,( x is the score of  on x before testing 



17 

Comparison of testing regimes 

• Testing with oracles: 

– Detailed analysis with perfect oracles: 

• testing with oracles on independently chosen  

testing suites; 

• testing with oracles on the same testing suite; 

– Speculative analysis of oracle imperfection 

• ‘back-to-back’ testing - lower and upper 

bounds identified under simplifying 

assumptions 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 



18 

In summary 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Performance of testing regimes (no account of the cost): 

– (best in terms of average system reliability achievable) 

independent testing with oracles; 

– (worse) testing with the same suite and oracles; 

– (worst) back-to-back testing. 

• Accounting for the cost may change this ordering! A 

trade-off can be struck, which depends on cost of test 

suite generation and cost of testing. 

• Counterintuitive observation:  

– forced diversity combined with testing with the same suite may 

lead to better system pfd than testing with independent suites 

(i.e. better result can be achieved more cheaply!) 



19 

Empirical Study with Database Servers 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Fault-tolerance with off-the-shelf software 
becomes cheaper than with bespoke 
development, but what is the dependability gain, if 
any?  

Empirical evidence is needed that the effort to build 
fault-tolerance with OTS is worthy 
But what software to use? 

- Toy examples? Open to criticism that findings are not 
applicable to complex software: 

- the gains may be very different between toy examples and ‘real’ 
complex software 
- difficulties of building FT solutions with diverse OTS s/w may be 
too high and the good idea is not practicable (Microsoft’s 
concern) 

- We avoid the first criticism by having decided to study 
complex OTS software such as RDBMS (SQL servers)  



20 

Overview of the study 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

We have used SQL database servers - complex OTS 
products, with many faults (fixed) in each release. 
Standardisation exists (SQL-92 and SQL-99 standards), 
hence design diversity is realistic.  

 
Difficulties 
 
Differences in the syntax - manual translation was needed  

- in parallel with the fault study a feasibility studies were 
undertaken as undergraduate student projects with automatic 
translation between the SQL dialects.  

Many proprietary extensions in the servers, some 
impossible to ‘translate’ in another dialect (missing 
functionality) 



21 

Architecture for Fault-Tolerant database 

replication with Diverse SQL servers 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Effectiveness of the architecture in the end depends on the 

assumptions made about the failures 

– with database replication the assumption of ‘fail-silent’ failure (i.e. 

crashes) is very common 

–  the studies allowed us to validate this assumption on the 

reported bugs. 



22 

Size of the 1st study 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Servers included in the study: 
Open source:  

PostgreSQL v. 7.0.0 (PG) 

Interbase v. 6.0 (IB), now developed under the name Firebird 

Commercial products (closed development):  
Oracle v. 8.0.5 (Oracle) 

MSSQL v. 7.0 (MSSQL) 

181 known bug reports for all the servers together were 

collected. 



23 

1st study: IB faults 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 



24 

1st study: PG, Oracle, MSSQL 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 



25 

1st study: 2 - Version combinations 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 



26 

Example: IB+PG Non-detectable bug 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

• Interbase Bug 223512(2) 

– both servers would drop Views using Drop 

Table statement.  

• violates of the SQL-92 standard, Drop View 

statement should be used. 



27 

1st study: Detectability of failures 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Percentage of bugs causing crash failure varies between servers from 
13% (MS SQL) to 21% (Oracle and PostgreSQL).  
 
A non-diverse scheme would only detect the self-evident failures: 

- crash failures,  
- failures reported by the server itself (as exceptions) and poor performance 
failures.  

For each of the four servers, less than 50% of bugs 
cause such failures.  
 
With diverse pairs detectability is greatly improved:  

- all the possible two-version fault-tolerant configurations detect the failures 
caused by at least 94% of the bugs used in the study.  
- None of the bugs caused a failure in more than two servers.  

 
Other issues: 

- diagnosability (if different valid results received from the replicas which, if 
any, is giving us the correct answer?). 

Data diversity (alternative but logically equivalent ways of formulating a query 
can be used to get from the same server multiple opinions and possibly 
diagnose the server ‘changing its mind’ – EDCC’06 reports on this aspect) 

- Recovery (recovery blocks are very expensive with large DBs). 



28 

The second study 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

92 new bug reports were collected for the later releases of 
the open-source DBMS products:  
 

- PostgreSQL 7.2 and Firebird 1.0 (the open-source descendant of 
Interbase 6.0.) 

 
The closed-development DBMS products were excluded 
from the collection: 
 

- Most of their bug reports lacked the bug scripts needed to trigger 
the faults.  
- But the new bug scripts were still translated into the dialects of the 
closed-development ones, and were ran in the releases used in 
our first study (Oracle 8.0.5 and MSSQL 7.0). 

 
The classification of faults and failures is the same as in the 
first study. 



29 

2nd Study - Analysis 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Incorrect results are still the most frequent failures. 
Engine crashes are slightly more frequent than in the first 
study: 

- but still no more than 22.2%.  

 
The number of non-self-evident failures is lower than in 
the first study:  

- 35% for PG 7.2 and 53% in FB.  

 
The number of bugs causing coincident failures was again 
low:  

- 5 coincident failures in total in the second study.  

 
None of the bugs caused failures in more than two DBMSs.  



30 

Summary –the Bugs Studies  

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Out of the 273 bug scripts run in both studies: 
very few bug scripts affected two DBMS products; 
none affected more than two; 
only five of these bug scripts caused identical, non-
detectable failures in two DBMS products:  

of these five, one caused non-detectable failures on only a few 
among the demands affected.  

The results of the second study substantially confirmed the 
general conclusions of the first study:  

the factors that make diversity useful do not seem to disappear as 
the DBMS products evolve (unclear if they have become more 
reliable) 

Using successive releases of the same product for fault 
tolerance also appeared useful, although less so (not 
detailed here, but scrutinised in the IEEE TDSC’07 article) 



31 

Summary –the Bugs Studies (2) 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

There is strong evidence against the fail-stop failure 
assumption for DBMS products.  

The majority of bugs cause non-crash failures: 
64.5% (n.s-e.) vs. 17.1% in the first study; 65.5% vs. 19% in the second 

Even though these are bug reports and not failure reports, this 
evidence goes against the common assumption that the 
majority of failures are engine crashes.  
Users and designers of fault-tolerant solutions should, therefore, 
seek solutions to tolerate subtle and non fail-silent failures 

 
It may be worthwhile for vendors to test their DBMS 
products using the known bug reports for other DBMS 
products.  

e.g. 4 MSSQL bugs were observed that had not been reported in the 
MSSQL service packs (previous to our observation period).  

Similar observations have been reported recently by a MIT 
team (Barbara Liskov and her PhD student Ben Vandiver):  

More than 50% of the known bugs (DB2, MySQL, etc.) lead to non-
self evident failures. 



32 

Details on the study 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

An article on both studies appears in the last issue of IEEE 

TDSC (October – December 2007) as ‘featured article’ with 

900+ pages of supplement available online with full detail 

on bugs and the observations. 



33 

Commercial Exploitation 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

The empirical work was conducted by my PhD students.  

- One conducted the fault study 

- Another one conducted performance measurements and in the 

process developed an innovative replication protocol which we 

patented (European patent already granted, US is still pending) 

 

With my younger colleagues we are trying to exploit 

commercially the benefits from software design diversity and 

build a highly reliable database storage using database 

replication with diverse databases. 



34 

Thank you 

29th CREST Open Workshop  

Software Redundancy 

18/11/2013 

Questions 


