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Spectrum-based Fault Localisation

A hit spectra is a pair (obs, e):

obsi Activity of components in
transaction i.

ei Outcome of transaction i
(pass or fail).

i
obsi ei1 2 3

1 1 1 0 1
2 1 0 1 1

Spectrum-based Reasoning:

• Different from statistical fault localisation approaches.

• Generate sets of components that would explain the observed
erroneous behaviour.

• Rank the candidates according to their likelihood of being
faulty.
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Diagnostic Candidate Generation

• Generate sets of components that
would explain the observed erroneous
behaviour.

i
obsi ei1 2 3

1 1 1 0 1
2 1 0 1 1
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• A minimal candidate is a set of components that cover all
failing transactions.

• Staccato1 & MHS22.

1Rui Abreu and Arjan J. C. van Gemund. “A Low-Cost Approximate Minimal Hitting Set Algorithm and its
Application to Model-Based Diagnosis”. In: SARA. 2009.

2Nuno Cardoso and Rui Abreu. “MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search
Algorithm”. In: MUSEPAT. 2013, pp. 25–36.
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Diagnostic Candidate Ranking

Barinel3 approach:

• For each candidate d under a set of observations (obs, e), the
posterior probability is calculated using Näıve Bayes rule4.

• Pr(d) is used to make larger candidates less probable.

Pr(d | obs) = Pr(d) ×
Pr(obs | d)

Pr(obs)

• Pr(obs) is not considered for ranking purposes (does not
depend on d).

• Pr(obs | d) is used to bias the probability based on the
run-time observations.

3Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “Spectrum-Based Multiple Fault Localization”. In:
ASE. 2009, pp. 88–99.

4Conditional independence is assumed throughout the process.
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Diagnostic Candidate Ranking

Pr(obs|d) =
∏

obsi∈obs

 G(obsi, d) if ei = 0

1− G(obsi, d) if ei = 1

G(obsi, d) is estimated:

• Using maximum likelihood estimation under parameters
{gj |j ∈ d}5.

• NFGE6: uses a feedback loop to update the health estimates
of each component.

5Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “Spectrum-Based Multiple Fault Localization”. In:
ASE. 2009, pp. 88–99.

6Nuno Cardoso and Rui Abreu. “A Kernel Density Estimate-Based Approach to Component Goodness
Modeling”. In: AAAI. 2013, pp. 152–158.
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Redundant Test Cases

At the spectra level of abstraction:

• Tests are redundant if they share similar activity patterns.

• Can exonerate faulty components.

Coincidental correctness7,8:

• Occurs when passing test cases execute faulty components
and no failure is triggered.

• Can be caused by incorrect or relaxed test oracles.

• Can occur due to the abstraction of program traces used.

7Wes Masri and Rawad Abou Assi. “Cleansing Test Suites from Coincidental Correctness to Enhance
Fault-Localization”. In: ICST. 2010, pp. 165–174.

8George K. Baah, Andy Podgurski, and Mary Jean Harrold. “Mitigating the confounding effects of program
dependences for effective fault localization”. In: FSE. 2011, pp. 146–156.
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Redundant Test Cases – Example

Consider the following hit-spectra matrix:

i
obsi ei1 2 3

1 1 1 0 1
2 0 1 1 1
3 1 0 1 1
4 1 0 0 0

• After candidate generation: D = 〈{1, 2}, {1, 3}, {2, 3}〉

• Diagnostic Ranking:
• Pr({2, 3}|obs) = 0.66
• Pr({1, 2}|obs) = 0.17
• Pr({1, 3}|obs) = 0.17
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Minimising Coincidental Correctness – Related work

Marsi et al.9 remove coincidentally correct test cases by:

• Selecting a set of suspicious statements executed by all failing
tests (called CCEs);

• Clustering tests into two groups based on the similarity of the
executed statements to the CCEs.

9Wes Masri and Rawad Abou Assi. “Cleansing Test Suites from Coincidental Correctness to Enhance
Fault-Localization”. In: ICST. 2010, pp. 165–174.
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Minimising Coincidental Correctness – Related work

Miao et al.10 use a similar clustering approach:

• Uses hard k-Means clustering with k = |T | × p.

• If a passing test is in the same cluster as a failing one, it is
labeled as coincidentally correct.

Two strategies:

• Cleaning Strategy: Coincidental test cases are removed from
the original test suite.

• Relabelling Strategy: The outcome of coincidental test i is
changed to failing (ei = 1).

10Yi Miao et al. “Identifying Coincidental Correctness for Fault Localization by Clustering Test Cases”. In:
SEKE. 2012, pp. 267–272.
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k-Means Clustering

k-Means: data elements are clustered into k distinct clusters.
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Fuzzy c-Means Clustering

Fuzzy c-Means: membership values represent the strength of the
association between a data element and a cluster.

16 / 19



Fuzzinel Approach

Work in progress.

Introduces the concept of assertion confidence:
• No longer assuming that all assertions are equally trustworthy.

• Fuzzy memberships of coincidentally correct tests can
represent confidence.

Pr(obsi, ci|d) = (1− ci) + (ci · Pr(obsi|d))

Example:

i 1 2 ei

ci

1 1 1 1

1

2 1 0 0

0.5

3 0 1 0

1

Pr({1}|obs) =
Pr({2}|obs)

Pr({1}|obs, c) = 5.0× 10−4

Pr({2}|obs, c) = 2.5× 10−4
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Conclusions

Exploiting Redundant Test Cases in Fault
Localisation: Good or Bad?

At the hit-spectra level of abstraction:

• Coincidental correctness from redundant test cases has a potential
negative effect on accuracy.

• The fault is exercised without triggering the failure, exonerating
potentially faulty components.

• Negative effects on fault localisation can however be minimised.

Introduced Fuzzinel:

• Does not remove nor relabel the input.

• Changes the confidence we have in certain tests.

Future challenges:

• How to better estimate the number of centroids in our fuzzy
clustering step?
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