Exploiting Redundant Test Cases in Fault Localisation: Good or Bad?

Alexandre Perez

alexandre.perez@fe.up.pt

Nuno Cardoso, José Campos, Rui Abreu nunopcardoso@gmail.com, jose.carlos.campos@fe.up.pt, rui@computer.com

> Department of Informatics Engineering Faculty of Engineering, University of Porto

> > November 19, 2013

Table of Contents

1 Spectrum-based Reasoning

2 Redundancy at the Test Level: Impacts?

3 Minimising Coincidental Correctness

4 Conclusions

Spectrum-based Fault Localisation

A hit spectra is a pair (obs, e):

 obs_i Activity of components in transaction i.

 e_i Outcome of transaction i (pass or fail).

Spectrum-based Fault Localisation

A hit spectra is a pair (obs, e):

 obs_i Activity of components in transaction i.

e_i Outcome of transaction *i* (pass or fail).

Spectrum-based Reasoning:

- Different from statistical fault localisation approaches.
- Generate sets of components that would explain the observed erroneous behaviour.
- Rank the candidates according to their likelihood of being faulty.

Diagnostic Candidate Generation

• Generate sets of components that would explain the observed erroneous behaviour.

$$\{3\} = \{2,3\} = \{1,2,3\} =$$

¹Rui Abreu and Arjan J. C. van Gemund. "A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis". In: *SARA*. 2009.

²Nuno Cardoso and Rui Abreu. "MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search Algorithm". In: *MUSEPAT*. 2013, pp. 25–36.

Diagnostic Candidate Generation

 obs_i

- A minimal candidate is a set of components that cover all failing transactions.
- STACCATO¹ & MHS2².

¹Rui Abreu and Arjan J. C. van Gemund. "A Low-Cost Approximate Minimal Hitting Set Algorithm and its Application to Model-Based Diagnosis". In: SARA. 2009.

²Nuno Cardoso and Rui Abreu. "MHS2: A Map-Reduce Heuristic-Driven Minimal Hitting Set Search Algorithm". In: *MUSEPAT*. 2013, pp. 25–36.

 $\operatorname{BARINEL}^3$ approach:

• For each candidate *d* under a set of observations (*obs*, *e*), the posterior probability is calculated using Naïve Bayes rule⁴.

$$\Pr(d \mid obs) = \Pr(d) \times \frac{\Pr(obs \mid d)}{\Pr(obs)}$$

³Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. "Spectrum-Based Multiple Fault Localization". In: ASE. 2009, pp. 88–99.

⁴Conditional independence is assumed throughout the process.

 $\operatorname{BARINEL}^3$ approach:

- For each candidate *d* under a set of observations (*obs*, *e*), the posterior probability is calculated using Naïve Bayes rule⁴.
- Pr(d) is used to make larger candidates less probable.

$$\mathsf{Pr}(d \mid obs) = \frac{\mathsf{Pr}(d)}{\mathsf{Pr}(obs)} \times \frac{\frac{\mathsf{Pr}(obs \mid d)}{\mathsf{Pr}(obs)}}{\mathsf{Pr}(obs)}$$

³Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. "Spectrum-Based Multiple Fault Localization". In: ASE. 2009, pp. 88–99.

⁴Conditional independence is assumed throughout the process.

 $\operatorname{BARINEL}^3$ approach:

- For each candidate *d* under a set of observations (*obs*, *e*), the posterior probability is calculated using Naïve Bayes rule⁴.
- Pr(d) is used to make larger candidates less probable.

$$\mathsf{Pr}(d \mid obs) = \mathsf{Pr}(d) \times \frac{\mathsf{Pr}(obs \mid d)}{\mathsf{Pr}(obs)}$$

• Pr(*obs*) is not considered for ranking purposes (does not depend on *d*).

³Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. "Spectrum-Based Multiple Fault Localization". In: ASE. 2009, pp. 88–99.

⁴Conditional independence is assumed throughout the process.

 $\operatorname{BARINEL}^3$ approach:

- For each candidate *d* under a set of observations (*obs*, *e*), the posterior probability is calculated using Naïve Bayes rule⁴.
- Pr(d) is used to make larger candidates less probable.

$$\Pr(d \mid obs) = \Pr(d) \times \frac{\Pr(obs \mid d)}{\Pr(obs)}$$

- Pr(*obs*) is not considered for ranking purposes (does not depend on *d*).
- $\Pr(obs \mid d)$ is used to bias the probability based on the run-time observations.

³Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. "Spectrum-Based Multiple Fault Localization". In: ASE. 2009, pp. 88–99.

⁴Conditional independence is assumed throughout the process.

$$\Pr(obs|d) = \prod_{obs_i \in obs} \begin{cases} G(obs_i, d) & \text{if } e_i = 0\\ 1 - G(obs_i, d) & \text{if } e_i = 1 \end{cases}$$

$G(obs_i, d)$ is estimated:

- Using maximum likelihood estimation under parameters {g_j|j ∈ d}⁵.
- NFGE⁶: uses a feedback loop to update the health estimates of each component.

⁵Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. "Spectrum-Based Multiple Fault Localization". In: ASE. 2009, pp. 88–99.

⁶Nuno Cardoso and Rui Abreu. "A Kernel Density Estimate-Based Approach to Component Goodness Modeling". In: AAAI. 2013, pp. 152–158.

Table of Contents

1 Spectrum-based Reasoning

2 Redundancy at the Test Level: Impacts?

3 Minimising Coincidental Correctness

4 Conclusions

Redundant Test Cases

At the spectra level of abstraction:

- Tests are redundant if they share similar activity patterns.
- Can exonerate faulty components.

⁷Wes Masri and Rawad Abou Assi. "Cleansing Test Suites from Coincidental Correctness to Enhance Fault-Localization". In: *ICST*. 2010, pp. 165–174.

⁸George K. Baah, Andy Podgurski, and Mary Jean Harrold. "Mitigating the confounding effects of program dependences for effective fault localization". In: *FSE*. 2011, pp. 146–156.

Redundant Test Cases

At the spectra level of abstraction:

- Tests are redundant if they share similar activity patterns.
- Can exonerate faulty components.

Coincidental correctness^{7,8}:

- Occurs when passing test cases execute faulty components and no failure is triggered.
- Can be caused by incorrect or relaxed test oracles.
- Can occur due to the abstraction of program traces used.

⁷Wes Masri and Rawad Abou Assi. "Cleansing Test Suites from Coincidental Correctness to Enhance Fault-Localization". In: *ICST*. 2010, pp. 165–174.

⁸George K. Baah, Andy Podgurski, and Mary Jean Harrold. "Mitigating the confounding effects of program dependences for effective fault localization". In: *FSE*. 2011, pp. 146–156.

Consider the following hit-spectra matrix:

i		obs_i		
ı	1	2	3	e_i
1	1	1	0	1
2	0	1	1	1
3	1	0	1	1
4	1	0	0	0

- After candidate generation: $D = \langle \{1, 2\}, \{1, 3\}, \{2, 3\} \rangle$
- Diagnostic Ranking:
 - $\Pr(\{2,3\}|obs) = 0.66$
 - $\Pr(\{1,2\}|obs) = 0.17$
 - $\Pr(\{1,3\}|obs) = 0.17$

- $\Pr(\{2,3\}|obs) = 0.66$
- $\Pr(\{1,2\}|obs) = 0.17$
- $\Pr(\{1,3\}|obs) = 0.17$

- $\Pr(\{2,3\}|obs) = 0.66$
- $\Pr(\{1,2\}|obs) = 0.17$
- $\Pr(\{1,3\}|obs) = 0.17$

÷	obs_i			
ı	1	2	3	e_i
1	1	1	0	1
2	0	1	1	1
3	1	0	1	1
4	1	0	0	0
5	1	0	1	0

- $\Pr(\{2,3\}|obs) = 0.59$
- $\Pr(\{1,2\}|obs) = 0.35$
- $\Pr(\{1,3\}|obs) = 0.06$

- $\Pr(\{2,3\}|obs) = 0.66$
- $\Pr(\{1,2\}|obs) = 0.17$
- $\Pr(\{1,3\}|obs) = 0.17$

- $\Pr(\{2,3\}|obs) = 0.66$
- $\Pr(\{1,2\}|obs) = 0.17$
- $\Pr(\{1,3\}|obs) = 0.17$

÷	obs_i			
ı	1	2	3	e_i
1	1	1	0	1
2	0	1	1	1
3	1	0	1	1
4	1	0	0	0
5	0	1	1	0

- $\Pr(\{1,2\}|obs) = 0.33$
- $\Pr(\{1,3\}|obs) = 0.33$
- $\Pr(\{2,3\}|obs) = 0.33$

Table of Contents

1 Spectrum-based Reasoning

2 Redundancy at the Test Level: Impacts?

3 Minimising Coincidental Correctness

4 Conclusions

Minimising Coincidental Correctness – Related work

*Marsi et al.*⁹ remove coincidentally correct test cases by:

- Selecting a set of suspicious statements executed by all failing tests (called CCEs);
- Clustering tests into two groups based on the similarity of the executed statements to the CCEs.

⁹Wes Masri and Rawad Abou Assi. "Cleansing Test Suites from Coincidental Correctness to Enhance Fault-Localization". In: *ICST*. 2010, pp. 165–174.

Minimising Coincidental Correctness – Related work

*Miao et al.*¹⁰ use a similar clustering approach:

- Uses hard *k*-Means clustering with $k = |T| \times p$.
- If a passing test is in the same cluster as a failing one, it is labeled as coincidentally correct.

¹⁰Yi Miao et al. "Identifying Coincidental Correctness for Fault Localization by Clustering Test Cases". In: SEKE. 2012, pp. 267–272.

Minimising Coincidental Correctness – Related work

*Miao et al.*¹⁰ use a similar clustering approach:

- Uses hard *k*-Means clustering with $k = |T| \times p$.
- If a passing test is in the same cluster as a failing one, it is labeled as coincidentally correct.

Two strategies:

- Cleaning Strategy: Coincidental test cases are removed from the original test suite.
- Relabelling Strategy: The outcome of coincidental test i is changed to failing $(e_i = 1)$.

¹⁰Yi Miao et al. "Identifying Coincidental Correctness for Fault Localization by Clustering Test Cases". In: SEKE. 2012, pp. 267–272.

k-Means Clustering

k-Means: data elements are clustered into k distinct clusters.

Fuzzy c-Means Clustering

Fuzzy c-Means: membership values represent the strength of the association between a data element and a cluster.

${\rm FUZZINEL} \ Approach$

Work in progress.

Introduces the concept of assertion confidence:

- No longer assuming that all assertions are equally trustworthy.
- Fuzzy memberships of coincidentally correct tests can represent confidence.

$$\Pr(obs_i, c_i | d) = (1 - c_i) + (c_i \cdot \Pr(obs_i | d))$$

${\rm FUZZINEL} \ Approach$

Work in progress.

Introduces the concept of assertion confidence:

- No longer assuming that all assertions are equally trustworthy.
- Fuzzy memberships of coincidentally correct tests can represent confidence.

$$\Pr(obs_i, c_i | d) = (1 - c_i) + (c_i \cdot \Pr(obs_i | d))$$

Example:

${\rm FUZZINEL} \ Approach$

Work in progress.

Introduces the concept of assertion confidence:

- No longer assuming that all assertions are equally trustworthy.
- Fuzzy memberships of coincidentally correct tests can represent confidence.

$$\Pr(obs_i, c_i | d) = (1 - c_i) + (c_i \cdot \Pr(obs_i | d))$$

Example:

i	1	2	e_i	c_i		$P_r(1) _{aba} = 5.0 \times 10^{-4}$
1	1	1	1	1	$\Pr(\{1\} obs) =$	$FI(\{1\} 00s,c) = 5.0 \times 10$
2	1	0	0	0.5	$\Pr(\{2\} obs)$	$\Pr(\{2\} obs,c) = 2.5 \times 10^{-4}$
3	0	1	0	1		

Table of Contents

1 Spectrum-based Reasoning

2 Redundancy at the Test Level: Impacts?

3 Minimising Coincidental Correctness

Conclusions

Exploiting Redundant Test Cases in Fault Localisation: Good or Bad?

At the hit-spectra level of abstraction:

- Coincidental correctness from redundant test cases has a potential negative effect on accuracy.
- The fault is exercised without triggering the failure, exonerating potentially faulty components.
- Negative effects on fault localisation can however be minimised.

Conclusions

Exploiting Redundant Test Cases in Fault Localisation: Good or Bad?

At the hit-spectra level of abstraction:

- Coincidental correctness from redundant test cases has a potential negative effect on accuracy.
- The fault is exercised without triggering the failure, exonerating potentially faulty components.
- Negative effects on fault localisation can however be minimised. Introduced $\ensuremath{\mathrm{FuzziNEL}}$:
 - Does not remove nor relabel the input.
 - Changes the confidence we have in certain tests.

Future challenges:

• How to better estimate the number of centroids in our fuzzy clustering step?

Exploiting Redundant Test Cases in Fault Localisation: Good or Bad?

Alexandre Perez

alexandre.perez@fe.up.pt

Nuno Cardoso, José Campos, Rui Abreu nunopcardoso@gmail.com, jose.carlos.campos@fe.up.pt, rui@computer.com

> Department of Informatics Engineering Faculty of Engineering, University of Porto

> > November 19, 2013