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Software Evolution

Release 1 Release 2 Release 3 Release 4

Time

N. Test Cases

. . .
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Amount of regression testing 

Release 1 Release 2 Release 3 Release 4

New Tests

Existing Tests

Time
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1000 machine-hours to execute 30,000 functional

test cases for a software product…

Mirarab, et al. The effects of time constraints on test case prioritization:

A series of controlled experiments. Transaction on Software Engineering 2010

Regression Testing is time consuming
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Test Cases Redundancy

Redundant 

Tests

Obsolete 

Tests

Regression 

Tests

New Tests

Reduce the Test  Suite Size

Reduce the Test Suite Cost

Preserve the effectiveness



Coverage Criteria

Code coverage

- Statement coverage

- Block coverage
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Coverage Criteria

Marre and Bertolino. TSE 2003

Decision-To-Decision Graph

- All paths coverage

- All branches coverage

- All uses

- …
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Model-Based coverage

- State Machine transitions

- Transition Tree

Coverage Criteria

Hemmati et al. TOSEM 2013



Test Suite Optimization

Redundant Test Cases

Input:

- Program

- Test Cases covering parts of P   

Problem:

Finding the minimal sub-set 

such that
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Hitting set

Input:

- Set

- A collection of sub-sets of P 

Problem:

Finding the minimal sub-set 

such that
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Test Suite Optimization
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Search

100 Test Cases

2100 ≈ 1,26 ∙ 1030 >

4.354 ± 0.012 ∙ 1017 seconds

N. of possible subsets

Age of the 

Universe



Additional Greedy Algorithm

Greedy Algorithm  (P, T)

(1) C ←Ø     covered statements of  P

(2) S ←Ø      set of selected test cases

(2) repeat

(3) j← max {Tj – (C Ո Tj)}

(4) C = C U Tj

(5) Remove Tj from T

S = S U {Tj}

(6) until C=P

1) Start with the test case

having the highest coverage

2) Iteratively add the most

distant test case

3) Perform step 1-2 until max

coverage is reached
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Additional Greedy Algorithm

Greedy Algorithm  (P, T)

(1) C ←Ø     covered statements of  P

(2) S ←Ø      set of selected test cases

(2) repeat

(3) j← max {Tj – (C Ո Tj)}

(4) C = C U Tj

(5) Remove Tj from T

S = S U {Tj}

(6) until C=P

1) Start with the test case

having the highest coverage

2) Iteratively add the most

distant test case

3) Perform step 1-2 until max

coverage is reached

Greedy step = 𝑇𝑗 − 𝐶 ∩ 𝑇𝑗 ∝ 𝐶 ∪ 𝑇𝑗 - 𝐶 ∩ 𝑇𝑗 ∝ Jaccard Distance

Greedy step is proportional to the Jaccard Distance 15



Sub-set
Cost

Coverage

Ideal Problem
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Additional Greedy Algorithm



Sub-set
Cost

Coverage

Sub-set Cost

Coverage

Ideal Problem
Real Problem
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Additional Greedy Algorithm



What is the best search algorithm?
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Hemmati et al. TOSEM 2013

1) Model Driven Testing
- Model-based coverage

- Abstract Test Cases

2) Search Algorithms
- Greedy Algorithm

- Random Search Algorithm

- Hill climbing

- Evolutionary Algorithms

3) Similarity functions

- Set distance

- Hamming distance

- Jaccard distance

- Clustering distance



What is the best search algorithm?
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Multi-Criteria Regression Testing

Multi-Objective ParadigmMono-Objective Paradigm
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Multi-Objective Paradigm

Multi-Criteria Regression Testing

Multiple otpimal solutions can be 

found



Diversity in Evolutionary Algorithms
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Diversity in Evolutionary Algorithms

Solutions Space Objectives Space

C
o

ve
ra

g
e

Costx1

x2
Population drift

Sub-optimal front
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Injecting Diversity 

during the Evolution



Estimating the Evolution Direction of Populations

to Improve Genetic Algorithm. A. De Lucia , M.

Di Penta, R. Oliveto, A. Panichella

GECCO  2012

Orthogonal exploration

Orthogonal Exploration of the Search Space in

Evolutionary Test Case Generation F. M. Kifetew,

A. Panichella , A. De Lucia , R. Oliveto, P. Tonella

ISSTA  2013
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What is the evolution direction?

P(t) = Population at 

generation t 
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What is the evolution direction?

P(t) = Population at 

generation t 

P(t+k) = Population 

after k generations
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What is the evolution direction?

Evolution Directions

P(t) = Population at 

generation t 

P(t+k) = Population 

after k generations
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Why?

P(t) = Population at 

generation t 

P(t+k) = Population 

after k generations

Evolution Directions

Orthogonal Individuals

29



How? 
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The basic idea is that a population of solutions P provided by GA at generation t
can be viewed as a m x n matrix

Individual 1

Individual 2

Individual m
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How? Singual Value Decomposition

VUP
nkkkkmnm 

 

Each matrix P can be decomposed in the product of three different 

matrices:
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How? Singual Value Decomposition

VUP
nkkkkmnm 

 

Each matrix P can be decomposed in the product of three different 

matrices:

tV
tt V

ttt VU  v2

v1
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Using SVD for Evolution Direction

Population at generation t

tttt VUP 

Population at generation t + k

ktktktkt VUP  

v2

v1

v1

v2

The currect evolution

direction is related to
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Using SVD for Evolution Direction

     VVUP ktktktkt

*

Generating  new orthogonal individuals through the following 
equation:

Shifting Operator:

𝑃𝑡+𝑘
∗ is  Σ shifted in

the search space

Rotating Operator:

𝑃𝑡+𝑘
∗ is rotated with

respect to 𝑃𝑡+𝑘
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Integration SVD with NSGA-II

Selection

Initialize 
population

Terminate
?

Crossover

Mutation

No

Yes

• Non Dominated Sorting Algorithm
• Crowding Distance
• Tournament Selection

• Multi-points crossover

• Bit-flip mutation
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Select best 50% 
of individuals

Generate an orthogonal 
sub-population

Replace the worst 50% 
of individuals with new 

sub-populations

SVD + NSGA-II

Selection

Initialize 
population

Terminate
?

Crossover

Mutation

No

Yes
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Empirical Evaluation
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Case Study Design

RQs Systems Algorithms Metrics

RQ1: To what extent does SVD-

NSGA-II produce near optimal

solutions, compared to

alternative techniques?

Bash, Flex, Grep, 

Gzip, Printtokens, 

Printtokens2

Schedule,

Schedule2, Sed, 

Space, vim

Add.Greedy

Algorithm

NSGA-II

SVD-NSGA-II

1. Pareto Front Size

2. N. non-dominated 

solutions

RQ2: What is the cost-

effectiveness of SVD-NSGA-II

compared to the alternative

techniques?

Bash, Flex, Grep, 

Gzip, Printtokens, 

Printtokens2

Schedule,

Schedule2, Sed, 

Space, vim

Add.Greedy

Algorithm

NSGA-II

SVD-NSGA-II

1. Fault Detection Rate
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Results

RQ1: To what extent does SVD-NSGA-II produce near optimal solutions,

compared to alternative techniques?
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Results

RQ1: To what extent does SVD-NSGA-II produce near optimal solutions,

compared to alternative techniques?
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Results

RQ2: What is the cost-effectiveness of SVD-NSGA-II compared to the

alternative techniques?
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Results

RQ2: What is the cost-effectiveness of SVD-NSGA-II compared to the

alternative techniques?

printtokens2 space
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Summary

100% The optimality was improved

The effectiveness was improved 

at same level of execution cost 64%



44

Conclusion
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