Lightweight
Language-Independent
Program Slicing

Jens Krinke
CREST, Department of Computer Science

University College London
David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Shin Yoo

CREST

COW 29, 19/11/2013

What is Program Slicing?

A program slice contains all statements
that a statement depends on.

Redundant code is deleted.

CS259 - Software Debugging - 4. Deduction - Udacity by Udacity

L{fktwwquAvM~W“A“1’Ggf :;h¢¢5
"L‘La - :FQ\SG, /

.?ruok?_-:‘?i&e A b‘uwu& 3““ % S
e conlarnws all slelewenk

orc IV\) "\ v
o= ud nFguole) Rt S woold Crrawsihued,

. o

“TM g .
s et

Ay or c ==" " "°"‘9“"”‘/°,+'
0. Mcﬂ'/fuo R -

e 0 -
e

Where is Slicing used?

® Debugging:
Which statements may have caused a fault?

® Comprehension:
Which statements influence a statement?

® FEvolution:
What is a change’s impact?

® Testing:
Which tests have to be rerun?¢

Program Slicing
100 Article Titles

tatic

generation

integration

hardware = brief sesss
extraction apProach w e wemw

formalisation :—

teehmquesswdv agorithmic = g v -

OW . location composition u =

testing
it 9Vﬂ|"at|0" ana Y SIS s 5 ite

subsets
Interpretatlﬁﬂ aspect-oriented Softw E arametrle d h u
p !lgcngl!ﬂgges alltﬂpmlill:[IL‘ = transformations. preconitions executmn g
paralle Support invarian
understanding"y:, 2= object oriented | nurius tor
relationship dependence - = = i € wsimia ahstraet o

" Ec;‘;;"‘“’ldentlfymg specialization ™ e _ grap s
SO tware CD e 2 anguaie loSCription
souree o Sema“tms D rocovery exracting " denotational engineering

cmponed source-level
eemplexlty expe"mentalh SpBCIflcatlun u Process evaluate system

= Z funetlen g

(Vo)

semantic

problems

weet

information

= relations
ying

p—
—. nif

as
—
oo

= - effective

jons
algorithm
I . C t
signment

forward

“' effeet

1A=
U‘Q

combination

Tamework hwmmhwal

simultane
metrics

frove

traditional
faster

analyze

[
methods

First 10 years

/9,81, 82, 84 - Mark Weiser’s articles

84 - Slicing in Dependence Graphs

86 - Dicing

87 - Fault Localisation

88 - Dynamic Slicing

88 - Applications: Maintenance, Differencing

88 - Semantics

40

30 H —

P ——— f T %1 %]

Busy 10 years

10

?1 - Quasi-static slicing Q4 - OOP =~ ot oz s s s oo @ o
Q2 - Testing @5 - Parametric Slicing

Q@3 - Pointers 95 - Frank Tip’s Survey

@3 - Concurrency 96 - Prolog

93 - Specifications 96 - VHDL

@3 - Functional Languages Q@7 - Amorphous Slicing

@3 - Function Extraction @8 - Conditioned Slicing

94 - Chopping 98 - State Machines

Path - - -39 Pre/Post Conditioned —— Abstract

N

Backward Conditioning Conditioned

b1 ™

Dicing Hybrid Constrained Quasi Static Simultaneous Dynamic

Incremental
Proposmon\ k“‘ / \
Il
Amorphous - = = =» Static 4— ————————— AH Dynamlc — — — 3 Relevant
/ A "\t\ < T~ ’ I
: ‘ o _ |
Stop-List : \ . So CaII Mark 'I Chopping
/ Z ' »\\ h Dependence-Cache K .
Barrier . v . 4 » / \ ’4

Simultaneous «— Decomposition

/N

End Interface InterProcedural — = = =% IntraProcedural

Forward Backward

J. Silva. A vocabulary of program slicing-based techniques.
ACM Computing Surveys, 2011

Stable 10 years

® |Improvements in precision, efficiency,
applications, usability, applicability, ...

® Empirical studies

® Tool(s): CodeSurfer and some prototypes
(Kaveri, JSlice, Sprite, Unravel, Frama-c,

WET, WALA, LLVM, Joanaq, JavaSlicer,...)

Slicing is easy.

® Slicing is just @
traversal of
dependences.

i<names.length

\ :
@
]

\4

match=true

® The hard part is the
Dependence Analysis!

® Not to mention the Pointer Analysis...

Challenges

® Almost no advances in the past 10 years!
® Tools cannot handle real world software:

® Exhaustive analyses are impossible,
source code is not available or compilable.

® Systems programmed in various languages,
including scripting and configurations.

class checker {

Who can slice this¢

public static void main(String[] args) {

int dots = 0;
int chars = 0;
for (int i = 0;
if (args[9].c
++dots;
} else if ((a
&&
++chars;

}
}

System.out.prin
System.out.prin

int main(int argc,

#include <stdlib.h>
#include <stdio.h>
##include <locale.h>

setlocale(LC_ALL,
struct lconv *cur
if (atoi(argv[1l])
{

printf("%s\n",
}

else

{
printf("%s\n",
}

return 0;

import commands
import sys

use_locale = True
currency = "?"

decimal = ",

if use_locale:
currency = commands.getoutput('./reader 0")
decimal = commands.getoutput('./reader 1")
cmd = ('java checker ' + currency
+ sys.argv[1l] + decimal + sys.argv[2])
print commands.getoutput(cmd)

hit Tuuer commaiia> *croncrhocl ciua

Yes, we can!

class checker {
public static void main(String[] args) {
int dots = 0;

for (int i = 0;
if (args[9].c
++dots;

#include <locale.h>

int main(int argc,
import commands
struct lconv *cur import sys

{ use_locale = True
pr‘int-F("%S ll, Cur\r‘ency - |l?|l

}

if use_locale:

decimal = commands.getoutput('./reader 1")
cmd = ('java checker ' + currency
+ sys.argv[1l] + decimal + sys.argv[2])
print commands.getoutput(cmd)

bt rie comwmana> *cconchncrl(lcoc

Slicing

A slice S of program P on slicing criterion C
is any executable program with:

1. S can be obtained from P
by deleting zero or more statements from P.

2. Whenever P halts on input i
with state trajectory T,

then S also halts on input i with state trajectory T,

and PROJ(T) = PROJ(T’), where PROJc is the
projection function associated with criterion C.

Dynamic Slicing

A dynamic slice S of program P on slicing criterion C
for inputs | is any executable program with:

1. S can be obtained from P
by deleting zero or more statements from P.

2. Whenever P halts on input i from |
with state trajectory T,

then S also halts on input i with state trajectory T,

and PROJ(T) = PROJ(T’), where PROJc is the
projection function associated with criterion C.

Our approach:
Observation-based Slicing

® delete statements

® execute the candidate slice
® observe the behaviour for a given criterion
® accept deletion if behaviour is unchanged

® repeat until no statement can be deleted

ORBS

® is language independent

® manipulates files,
builds and executes the system as usual

® comes in a plain iterative version
and a delta debugging version

® creates correct and executable slices
(by construction)

Similar approaches

® (Critical Slicing (DeMillo et al, 1996):
A critical slice contains all statements
that cannot be independently deleted.

® STRIPE (Cleve and Zeller, 2000):
Uses delta debugging to remove statements
from an execution trace using a debugger.

® Both may produce invalid slices!

Example (a=10)

int main(int argc, char **argv) {
int a;
Jepit. 7.
jnit o
ik .
a = atoi(argv[l]);
X = 0;
Je=a55
a = a - 10;
if (a > i)
Xo= k1
} else {
z = 9;
}

Xo= s
printf("%d\n",);
return 9;

mmmmimimimimimIm

S
S
S
S
S
S
S
S
S

Empirical Evaluation
(small programs)

13 test programs, 8 languages, 41 criteria
ORBS is feasible

delta debugging is more expensive
than the plain iterative version

different versions create different results

critical slicing needs fewest executions,
but produces invalid slices

Case Study: bash

® 1153 files

® 118,167 SLOC

® 8 different languages

® includes generated source code

® contains libraries

Criterion

® Variable ‘val’ at line 1393 in ‘expr.c’
(result of converting a string to an int)

® Test cases ‘arith.tests’ are used as inputs
(executes the arithmetic functions)

® (Criterion is executed 80,425 times
(i.e. 80,425 elements in the trajectory)

Scenario 1

Files to be sliced:
® variables.c (variables are used in tests)
® parse.y (defines input format)
Results:
® 9417 of 10,804 lines are deleted
® 42,793 compilations, 5,370 executions

® slice size: 13% (17% SLOC)

® only 88 lines of 849 grammair lines are left
8 rules have been removed completely

Scenario 2

Only the first 100 elements of the trajectory
are compared.

Small changes in the results:
® 510 more lines are deleted
® 7846 fewer compilations

® 1008 fewer executions

Scenario 3

A third file is to be sliced: ‘lib/glob /glob.c’
® part of a library, used as a binary component
® nothing in it is actually executed

Results
® Only 6 out of 1100 are left

® 1865 more compilations, 510 more executions

Scenario 4

A fourth file is to be sliced: ‘subst.c’,
® the largest single source file within bash
® 9392 lines
Results
® 665 out of 9392 lines are left
® 19,758 out of 21,296 are deleted
® 10 additional lines in parse.y are deleted

® 29,590 more compilations, 4137 more executions

External Factors

® Order of files

® Source code layout

® Environment
® Operating systems
® Tool set (gcc vs. llvm)

® Build configuration (optimisation, profiling)

ORBS
(Observation-based Slicing)

® Uses deletion—execution—observation
® Generates correct and executable slices

® Slices systems built using multiple languages,
including libraries and binary components

® Produces significantly smaller slices

CREST
Jens Krinke, UCL Computer Science T I, .

