)) . Overview

Listening to big data

* Is clone analysis / empirical SE a Big Data problem?
— ... and should we care?

Or, philately will get you everywhere

* Looking hard for the Big Picture

— And why sometimes that can be a bad idea
Mike Godfrey

Software Architecture Group * Let's go swimming with the data!

University of Waterloo) .
— Some experiences and some advice

UNIVERSITY OF

WATERLOO

(More data + simple algorithms)

Big data >> (complex algorithms)

* Three Vs
— Volume, Velocity, Variety * Fantastic talk by Peter Norvig of Google:
"The unreasonable effectiveness of data"
. 'l) — H
. Why? http://www.youtube.com/watch?v=yvDCzhbjYWs

— Enhanced decision making, insight discovery, and
process optimization "Every time | fire a linguist, my scores get better."

— [Fred Jelinek, paraphrased]

. .
Common problems. * But does that work for clone detection / ESE too?
— Capture, curation, storage, search, sharing, transfer, — Should we all use N-gram algorithms?

analysis, and visualization

Data quality (Big data + simple algorithms)?

* NLP, for example, analyzes unstructured prose
— Much variation: intent, word ordering, relationships, ...
T SAL) THE CODE FOR IT LOOKED EASY. IT'S AND DON'T — NLP often does some pre-processing e.g., stemming

YOUR COMPUTER 5] JUST A BUNCR OF TYPING, i GET ME
PROGRAM YESTERDAY. g AND HALF OF THE WORDS i| STARTED THEY
: WERE. SPELLED 7| ABOUT e * ESE examines development artifacts with lots of internal structure +
; g I‘g‘é"‘og"ﬁ"‘ ME OF external linkage, implicit and explicit
i 2 COLONS. YOU, SIR. — Source code text, including comments
" i — Version control meta-data
H ~ — Bug reports
2]

* When you have reliable structure, exploit it!
— Yes?
— So maybe big ESE data isn't really big data ...

Looking for the Big Picture Looking for the Big Picture

Trials and Errors: Why Science is Failing Us A selective attention test

Wired Magazine, December 2011 "l used to think that the brain was the most wonderful organ
by Jonah Lehrer in my body. Then | realized who was telling me this."
— Emo Philips

http://www.youtube.com/watch?v=vJG698U2Mvo

"Physics is the only real science.

The rest are just stamp collecting.”

sorrumerioa . £1TIESt Rutherford (1871-1937)

Father of atomic physics
Nobel prize for ... chemistry

Tim Minchin

http://www.upworthy.com/this-is-the-most-inspiring-yet-depressing-yet-hilarious-
yet-horrifying-yet-heartwarming-grad-speech

N e e
3 : o o o 100 km
ey - e e Y
) ,l // ----------------
Woif (0 (Wenman) A g -
. e
| SSve "}";; P m) a >, s
92" W p (Bindioe} Genovesa
’

~ 1S

Floreana .
O 9/23/1835' o

Linux kernel:
Growth of kernel src tree (# of files)

y = .21*x2 + 252*x + 90,055 r2=.997

6000

5000

Development releases (1.1, 1.3, 2.1, 2.3)
Stable releases (1.0, 1.2, 2.0, 2.2)

N
o
o
[S]

N
(=1
o
o

of source code files (*.[ch])
8
o
o

1000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr200

Uncommented LOC

The "S" curve of successful growth

size

Linux kernel:
Average / median .h file size

=
t=3

NS
o

-o— Average .hfile size - dev. releases
—— Average hfile size - stable releases
—& Median hfile size - dev. releases
—- Median .hfile size - stable releases

N
o

'Cloning considered harmful’

Source code cloning considered harmful

“Number one in the stink parade is .
) 1. Forkin - iZi
REersctorinG duplicated code. If you see the } Harfware variation 3. Post-hoc customizing
INPROVIG THE DEsiy same code structure in more than e.g., Linux SCSI drivers — Bug workarounds
oF ExisTNG ConE one place, you can be sure that _ Platform variation — Replicate + specialize

your program will be better if you
find a way to unify them.”
— “Bad Smells” .
[Beck/Fowler in Refactoring] 2. Templating
— Boilerplating
— API/library protocols
— Generalized programming
idioms
— Parameterized code

— Experimental variation

Cloning harmfulness:

: What to do?
Two open source case studies

* Swim with the data

Apache Gnumeric
Group Pattern Good Harmful Good Harmful
Forking Hardware variation 0 0 0 0 . . .
Forking Platform variation 0 0 0 * Be the gorllla in the mist
Forking Experimental variation 7 0 0 0
Templating Boiler-plating 5 0 6 7
Templating API 0 0 0 9
Templating Idioms 0 L2 L 1 * Look for lumps under the carpet & ask "Why?"
Templating Parameterized code 5 12 10 34
Customizing Replicate + specialize 12 4 15 16
Customizing Bug workarounds 0 0 0 0
Total 36 28 32 67

Apache httpd 2.2.4 - 60 Tokens
Gnumeric 1.6.3 - 60 Tokens

402,387,260,077,093,773,543,702,433,923,003,985,719,374,864,210,714,632,543,799,910, 429,938,512,
398,629,020,592,044,208,486,969,404,800,479,988,610,197,196,058,631,666,872,994,808,558,901,323,
829,669,944,590,997,424,504,087,073,759,918,823,627,727,188,732,519,779,505,950,995,276,120,874,
975,462,497,043,601,418,278,094,646,496,291,056,393,887,437,886,487,337,119,181,045,825,783,647,
849,977,012,476,632,889,835,955,735,432,513,185,323,958,463,075,557,409,114,262,417,474,349,347,
553,428,646,576,611,667,797,396,668,820,291,207,379,143,853,719,588,249,808,126,867,838,374,559,
731,746,136,085,379,534,524,221,586,593,201,928,090,878,297,308,431,392,844,403,281,231,558,611,
036,976,801,357,304,216,168,747,609,675,871,348,312,025,478,589,320,767,169,132,448,426,236,131,
412,508,780,208,000,261,683,151,027,341,827,977,704,784,635,868,170,164,365,024,153,691,398,281,
264,810,213,092,761,244,896,359,928,705,114,964,975,419,909,342,221,566,832,572,080,821,333,186,
116,811,553,615,836,546,984,046,708,975,602,900,950,537,616,475,847,728,421,889,679,646,244,945,
160,765,353,408,198,901,385,442,487,984,959,953,319,101,723,355,556,602,139,450,399,736,280,750,
137,837,615,307,127,761,926,849,034,352,625,200,015,888,535,147,331,611,702,103,968,175,921,510,
907,788,019,393,178,114,194,545,257,223,865,541,461,062,892,187,960,223,838,971,476,088,506,276,
862,967,146,674,697,562,911,234,082,439,208,160,153,780,889,893,964,518,263,243,671,616,762,179,
168,909,779,911,903,754,031,274,622,289,988,005,195,444,414,282,012,187,361,745,992,642,956,581,
746,628,302,955,570,299,024,324,153,181,617,210,465,832,036,786,906,117,260,158,783,520,751,516,
284,225,540,265,170,483,304,226,143,974,286,933,061,690,897,968,482,590,125,458,327,168,226,458,
066,526,769,958,652,682,272,807,075,781,391,858,178,889,652,208,164,348,344,825,993,266,043,367,
660,176,999,612,831,860,788,386,150,279,465,955,131,156,552,036,093,988,180,612,138,558,600,301,
435,694,527,224,206,344,631,797,460,594,682,573,103,790,084,024,432,438,465,657,245,014,402,821,
885,252,470,935,190,620,929,023,136,493,273,497,565,513,958,720,559,654,228,749,774,011,413, 346,
962,715,422,845,862,377,387,538,230,483,865,688,976,461,927,383,814,900,140,767,310, 446,640,259,
899,490,222,221,765,904,339,901,886,018,566,526,485,061,799,702,356,193,897,017,860,040,811,889,
729,918,311,021,171,229,845,901,641,921,068,884,387,121,855,646,124,960,798,722,908,519,296,819,
372,388,642,614,839,657,382,291,123,125,024,186,649,353,143,970,137,428,531,926,649,875,337,218,
940,694,281,434,118,520,158,014,123,344,828,015,051,399,694,290,153,483,077,644,569,099,073,152,
433,278,288,269,864,602,789,864,321,139,083,506,217,095,002,597,389,863,554,277,196,742,822,248,
757,586,765,752,344,220,207,573,630,569,498,825,087,968,928,162,753,848,863,396,909,959,826,280,
956,121,450,994,871,701,244,516,461,260,379,029,309,120,889,086,942,028,510,640,182,154,399,457,
156,805,941,872,748,998,094,254,742,173,582,401,063,677,404,595,741,785,160,829,230,135,358,081,
840,096,996,372,524,230,560,855,903,700,624,271,243,416,909,004,153,690,105,933,983,835,777,939,
410,970,027,753,472,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,
000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

Luncheon with the boating party

* While fooling around with RASCAL, | printed N! in the
range N=1,...,1000

— 1000! = 4.02 x 102567
... in case you were wondering,

— A googol (note spelling) is only 10190

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0
00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0
00,000

* Here’s what 1000! looks like:

402,387,260,077,093,773,543,702,433,923,003,985,719,374,864,210,714,632,543,799,910,429,938,512,
398,629,020,592,044,208,486,969,404,800,479,988,610,197,196,058,631,666,872,994,808,558,901,323,
829,669,944,590,997,424,504,087,073,759,918,823,627,727,188,732,519,779,505,950,995,276,120,874,
975,462,497,043,601,418,278,094,646,496,291,056,393,887,437,886,487,337,119,181,045,825,783,647,
849,977,012,476,632,889,835,955,735,432,513,185,323,958,463,075,557,409,114,262,417,474,349,347,
553,428,646,576,611,667,797,396,668,820,291,207,379,143,853,719,588,249,808,126,867,838,374,559,
731,746,136,085,379,534,524,221,586,593,201,928,090,878,297,308,431,392,844,403,281,231,558,611,
036,976,801,357,304,216,168,747,609,675,871,348,312,025,478,589,320,767,169,132,448,426,236,131,
412,508,780,208,000,261,683,151,027,341,827,977,704,784,635,868,170,164,365,024,153,691,398,281,
264,810,213,092,761,244,896,359,928,705,114,964,975,419,909,342,221,566,832,572,080,821,333,186,
116,811,553,615,836,546,984,046,708,975,602,900,950,537,616,475,847,728,421,889,679,646,244,945,
160,765,353,408,198,901,385,442,487,984,959,953,319,101,723,355,556,602,139,450,399,736,280,750,
137,837,615,307,127,761,926,849,034,352,625,200,015,888,535,147,331,611,702,103,968,175,921,510,
907,788,019,393,178,114,194,545,257,223,865,541,461,062,892,187,960,223,838,971,476, 088,506,276,
862,967,146,674,697,562,911,234,082,439,208,160,153,780,889,893,964,518,263,243,671,616,762,179,
168,909,779,911,903,754,031,274,622,289,988,005,195,444,414,282,012,187,361,745,992,642,956,581,
746,628,302,955,570,299,024,324,153,181,617,210,465,832,036,786,906,117,260,158,783,520,751,516,
284,225,540,265,170,483,304,226,143,974,286,933,061,690,897,968,482,590,125,458,327,168,226,458,

066,526,769,958,652, 682,272 993,266,043,367,
660,176,999,612,831,860,788, , . 138,558,600,301,
435,694,527,224,206,344,631, That's 249 tra|||ng zeros! 245,014,402,821,
885,252,470,935,190,620,929, 774,011,413, 346,
962,715,422,845,862,377,387 310,446,640,259,

899,490,222,221,765,904,339,901,886,018,566,526,485,061,799,702,356,193,897,017,860,040,811,889,

729,918,311,021,171,229,845.901.641.921.068.884,387.121.855.646.124.960.798.722.908,519,296,819,
372,388,642,614,839,657, 49,875,337,218,
940,694,281,434,118,520, | 69,099,073,152,
233370, 205.26 064,000, And as N grows, they accumulate! [53:753-570: 338
757,586,765,752,344,220, 09,959,826,280,

956,121,450,994,871,701,244,516,461,260,379,029,309,120,889,086,942,028,510,640,182,154,399,457,
156,805,941,872,748,998,094,254,742,173,582,401,063,677,404,595,741,785,160,829,230,135,358,081,
840,096,996,372,524,230,560,855,903,700,624,271,243,416,909,004,153,690,105,933,983,835,777,939,
410,970,027,753,472,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,
000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

Helper function #1

public int countZeros (int n) {
if (n < 10) {
return 0;

} else if (n & 10 == 0) {
return 1 + countZeros (n / 10);
} else {

return countZeros (n / 10);

}

rascal> int i = fact(1000);
int: 4023872600770..

rascal> countZeros(i);
int: <EE)

Helper function #2 — Let’s play around

public void printLastTwenty (int n){
for(int i <- [n-19..n]) {
println ("<i>! has <countTrailingZeros(fact(i))> ”

}
}

rascal>printLastTwenty(1000); 991! has 245 trailing zeros.
981! has 243 trailing zeros. 992! has 245 trailing =zeros.
982! has 243 trailing zeros. 993! has 245 trailing =zeros.
983! has 243 trailing zeros. 994! has 245 trailing =zeros.
984! has 243 trailing zeros. 995! has 246 trailing zeros.
985! has 244 trailing zeros. 996! has 246 trailing =zeros.
986! has 244 trailing zeros. 997! has 246 trailing =zeros.
987! has 244 trailing zeros. 998! has 246 trailing zeros.
988! has 244 trailing zeros. 999! has 246 trailing zeros.
989! has 244 trailing zeros. 1000! has 249 trailing zeros.
990! has 245 trailing zeros. ok

+ "trailing zeros.");

Helper function #1, v1.1

public int countTrailingZeros (int n) {
if (n < 10) {
return 0;
} else if (n % 10 == 0) {
return 1 + countTrailingZeros (n / 10);
} else {
return 0 ;

}

rascal> countTrailingZeros(i);
int: 249

Looking for lumps

public void findLumps (int n) {

}

rascal>findLumps(1000);

R R NR R RP R

int iMinusOneFactZeros= 0;
for (int i <- [1l..n]) {

int iFactZeros = countTrailingZeros(fact(i));
int diff = iFactZeros - iMinusOneFactZeros ;

if (diff >= 1) {
println ("<diff> more zeros at <i>!");

}

iMinusOneFactZeros = iFactZeros;

more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at

more zeros at 5!
more zeros at 10!
more zeros at 15!
more zeros at 20!
more zeros at 25!
more zeros at 30!
more zeros at 35!

N B R R RN e

40!
451
50!
554
60!
65!
70!
75!

more
more
more
more
more
more
more
more
more
more
more

P WRERRRRNRRRBR

=i

more
more
1 more

w

rascal>findLumps2(1000,2);
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at
more zeros at

NWNDNMNDNDNDWNDDNDNDDN

w NN

Looking for lumps

zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros

zeros
zeros
zeros

Looking for lumps

more zeros at
more zeros at
more zeros at

at
at
at
at
at
at
at
at
at
at
at

at
at
at

80!
851
90!
951
100!
105!
110!
115!
120!
1251
130!

245!
250!
255!

25!

50!

751

100!
125!
150!
175!
200!
225!
250!
275!

950!
975!
1000!

1 more
more
1 more

w

1 more
more
more

(SRS

more
more
more
more

W =

zZeros
zeros
zZeros

zZeros
zeros
zZeros

zZeros
zeros
zeros
zeros

at
at
at

at
at
at

at
at
at
at

495!
500!
505!

620!
625!
630!

985!
990!
995!
1000!

rascal>findLumps2(1000,3);
at 125!
at 250!
at 375!
at 500!
at 625!
at 750!
at 875!
at 1000!

more
more
more
more
more
more
more
more
ok

WWwwkwwww

zeros
zZeros
zZeros
zZeros
zeros
zZeros
zZeros
zZeros

rascal>findLumps2(1000,4);
4 more zeros at 625!

ok

Helper function #3, v1.1

public void findLumps2 (int n, int tao) {
int iMinusOneFactZeros= 0;
for (int i <- [l..n]) {
int iFactZeros = countTrailingZeros(fact(i));
int diff = iFactZeros - iMinusOneFactZeros ;
if (diff >= tao) {
println ("<diff> more zeros at <i>!");

}

iMinusOneFactZeros = iFactZeros;

* We can parameterize the threshold to look for jumps
of 2, 3, or 4 zeros

50=1
51=5
52=125
53=125
54=625
5°=3125

An analytic solution Final functions

ey . public int predictZeros (int N) {
Let N be a positive integer. P s e S
— int nz = 0;
Let k = floor (log; N) for (int i <- [1..N]){
Start a counter at zero, call it nz int p5 = 1;
for (int j <- [1..k]) {
We want to examine i <- [1..N] p5 *= 5;
.. . . if (i % p5 == 0) {
If i is not divisible by 5, ignore it nz += 1;
If i is divisible by 5, add 1 to nz } ei‘za’;-(.
If i is also divisible by 25, add 1 more }
}
}
If iis also divisible by 2%, add 1 more return nz;
}

public void verifyTheory (int N) {

int checkInterval = 100; // for printing Time to Celebrate!

bool failed = false;
for (int i <- [1..N]) {

{fact=fact(l); rasca|>verifyTheory(1p);
int p = predictZeros(i); TPI:e theory works fori: 1..10
. Lo . o
igt(g ;=c21;n1{:Tra111ngZeros (ifact); rascal>verifyTheory(100);
failed = true; 100! has 24 trailing ze.ros
println (“Found a counter example at i=<i>"); The theory works for i: 1..100
break; (.
} else { .
if (i % checkInterval == 0) { rascaI>ver|fyTh.e.ory(1000);
println ("<i>! has <p> trailing zeros"); 100 L 2 tra!I!ng Zeros
} 200! has 49 trailing zeros
} 300! has 74 trailing zeros
} 400! has 99 trailing zeros
iF (IEailed) 1 500! has 124 tra?l?ng zeros
println ("The theory works for i: 1..<N>"); 600! has 148 trailing zeros .
} Found a counter example at i=625
} predicted zeros = 155

observed zeros =156
ok

Looking under the hood

// I wrote these little wrappers.

// Log for an arbitrary base
public real logB(real a, real base) {
return log(a) / log(base);

}

public real floor (real a) {
return toReal(round (a - 0.5));

}

public int floorLogBase (int a, int b) {

return toInt(floor(logB(toReal(a), toReal(b))));

}

rascal>floorLogBase(625,5);
int: 3
rascal>logB(625.0,5.0);

real: 3.9999999999999998757330130880776320985295476764801684

A better, exact solution

// Also change predictZeros to call this version

public int floorLogBase2 (int a, int b) {

int remaining = a;
int ans = 0;

while (remaining >= b)

ans += 1;
remaining /= b;
}

return ans;

rascal>verifyTheory(1000);
100! has 24 trailing zeros
200! has 49 trailing zeros
300! has 74 trailing zeros
400! has 99 trailing zeros
500! has 124 trailing zeros
600! has 148 trailing zeros

{

700! has 174 trailing zeros
800! has 199 trailing zeros
900! has 224 trailing zeros
1000! has 249 trailing zeros
The theory works for i: 1..1000
ok

A bad fix (that kinda works)

// I wrote these little wrappers.

// Log for an arbitrary base

public real logB(real a, real base) {
return log(a) / log(base);

}

public real floor (real a) {
return toReal(round (a - 0.5 + 0.00001));

}

public int floorLogBase (int a, int b) {
return toInt(floor(logB(toReal(a), toReal(b))));
}

Lessons?

Explore the terrain, take notes, build intuition, develop
theories, test them

— Refine, repeat

— Double check

Build infrastructure with natural “break points”
— Understandable >> fast, esp. in the beginning

— The correct way >> the easy way,
* The correct way may be pretty easy too

Document and later challenge your assumptions
— Are you measuring what you think you are measuring?

Listening to big data

Or, philately will get you everywhere

Mike Godfrey
Software Architecture Group

University of Waterloo

UNIVERSITY OF

WATERLOO

What history taught me

Study what you already have and understand
— Often, your intuition is golden
— Take it apart and see how it works (e.g., Linux study)

Challenge pre-conceived notions
— Create testable hypotheses + evaluate them (e.g., cloning)

Software archives contain lots of rich data
— But need to process, link, mine the artifacts

Need to continually re-examine reasonableness of
assumptions
— Don't blindly trust the numbers; dig and validate!

