
Listening(to(big(data(

(

Or,(philately(will(get(you(everywhere(

Mike(Godfrey ((

So<ware(Architecture(Group(

University(of(Waterloo(

Overview(

•  Is(clone(analysis(/(empirical(SE(a(Big(Data(problem?(

–  …(and(should(we(care?(

•  Looking(hard(for(the(Big(Picture(
–  And(why(someJmes(that(can(be(a(bad(idea(

•  Let's(go(swimming(with(the(data!(

–  Some(experiences(and(some(advice(

"Big(data"(

•  Three(Vs((
–  Volume,(Velocity,(Variety(

•  Why?(

–  Enhanced(decision(making,(insight(discovery,(and(

process(opJmizaJon(

•  Common(problems:(

–  Capture,(curaJon,(storage,(search,(sharing,(transfer,(
analysis,(and(visualizaJon(

(More(data(+(simple(algorithms)((

>>((complex(algorithms)(

•  FantasJc(talk(by(Peter(Norvig(of(Google:(
"The(unreasonable(effecJveness(of(data"(

h[p://www.youtube.com/watch?v=yvDCzhbjYWs(

•  "Every'(me'I'fire'a'linguist,'my'scores'get'be8er."''

–  [Fred(Jelinek,(paraphrased](

•  But(does(that(work(for(clone(detecJon(/(ESE(too?(
–  Should(we(all(use(Ncgram(algorithms?(

Data(quality((Big(data(+(simple(algorithms)?(

•  NLP,(for(example,(analyzes(unstructured(prose(

–  Much(variaJon:(intent,(word(ordering,(relaJonships,(…(

–  NLP(o<en(does(some(precprocessing(e.g.,(stemming(

•  ESE(examines(development(arJfacts(with(lots(of(internal(structure(+(

external(linkage,(implicit(and(explicit(

–  Source(code(text,(including(comments((

–  Version(control(metacdata(

–  Bug(reports(
–  …(

•  When(you(have(reliable(structure,(exploit(it!(

–  Yes?(
–  So(maybe(big(ESE(data(isn't(really(big(data(…(

Looking(for(the(Big(Picture(

Trials(and(Errors:(Why(Science(is(Failing(Us(

Wired(Magazine,(December(2011(

by(Jonah(Lehrer(

Looking(for(the(Big(Picture'

A(selecJve(a[enJon(test(

(

"I'used'to'think'that'the'brain'was'the'most'wonderful'organ'

in'my'body.'Then'I'realized'who'was'telling'me'this."'

'—'Emo'Philips'

'

h[p://www.youtube.com/watch?v=vJG698U2Mvo(

Tim(Minchin(

h[p://www.upworthy.com/thisciscthecmostcinspiringcyetcdepressingcyetchilariousc

yetchorrifyingcyetcheartwarmingcgradcspeech(

"Physics'is'the'only'real'science.''

'The'rest'are'just'stamp'collec(ng."'

'

Ernest Rutherford (1871-1937)

Father of atomic physics
Nobel prize for … chemistry

time

size

The �S� curve of successful growth The("S"(curve(of(successful(growth(

Growth of Linux kernel source tree
(# of src files)!

0

1000

2000

3000

4000

5000

6000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

of

 s
ou

rc
e

co
de

 f
ile

s
(*

.[c
h]

)

Development releases (1.1, 1.3, 2.1, 2.3)

Stable releases (1.0, 1.2, 2.0, 2.2)

y = .21*x2 + 252*x + 90,055 r2=.997

Linux(kernel:(

Growth(of(kernel(src(tree((#(of(files)(

Linux(kernel:(

Average(/(median(.h(file(size(

0

20

40

60

80

100

120

140

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

U
nc

om
m

en
te

d
LO

C
Average .h file size -- dev. releases
Average .h file size -- stable releases
Median .h file size -- dev. releases
Median .h file size -- stable releases

Source code cloning

�Number one in the stink parade is

duplicated code. If you see the
same code structure in more than
one place, you can be sure that
your program will be better if you
find a way to unify them.�

–  “Bad Smells”
 [Beck/Fowler in Refactoring]

'Cloning(considered(harmful�(
considered(harmful(

1.  Forking
–  Hardware variation

e.g., Linux SCSI drivers
–  Platform variation
–  Experimental variation

2.  Templating
–  Boilerplating
–  API / library protocols
–  Generalized programming

idioms
–  Parameterized code

3.  Post-hoc customizing
–  Bug workarounds
–  Replicate + specialize

Cloning harmfulness:
Two open source case studies

Group Pattern Good Harmful Good Harmful
Forking Hardware variation 0 0 0 0
Forking Platform variation 10 0 0 0
Forking Experimental variation 4 0 0 0
Templating Boiler-plating 5 0 6 7
Templating API 0 0 0 9
Templating Idioms 0 12 1 1
Templating Parameterized code 5 12 10 34
Customizing Replicate + specialize 12 4 15 16
Customizing Bug workarounds 0 0 0 0
Total 36 28 32 67

Apache httpd 2.2.4 - 60 Tokens
Gnumeric 1.6.3 - 60 Tokens

Apache Gnumeric

What(to(do?(

•  Swim(with(the(data(

•  Be(the(gorilla(in(the(mist(

•  Look'for'lumps'under(the(carpet(&(ask("Why?"(

Luncheon(with(the(boaJng(party(

•  While(fooling(around(with(RASCAL,(I(printed(N!(in(the(
range(N=1,…,1000(

–  1000!(≈(4.02(x(102567((
…(in(case(you(were(wondering,((

–  A(googol((note(spelling)(is(only(10100(
10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0

00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0

00,000(

(

•  Here’s(what(1000!(looks(like:(

402,387,260,077,093,773,543,702,433,923,003,985,719,374,864,210,714,632,543,799,910,429,938,512,
398,629,020,592,044,208,486,969,404,800,479,988,610,197,196,058,631,666,872,994,808,558,901,323,
829,669,944,590,997,424,504,087,073,759,918,823,627,727,188,732,519,779,505,950,995,276,120,874,
975,462,497,043,601,418,278,094,646,496,291,056,393,887,437,886,487,337,119,181,045,825,783,647,
849,977,012,476,632,889,835,955,735,432,513,185,323,958,463,075,557,409,114,262,417,474,349,347,
553,428,646,576,611,667,797,396,668,820,291,207,379,143,853,719,588,249,808,126,867,838,374,559,
731,746,136,085,379,534,524,221,586,593,201,928,090,878,297,308,431,392,844,403,281,231,558,611,
036,976,801,357,304,216,168,747,609,675,871,348,312,025,478,589,320,767,169,132,448,426,236,131,
412,508,780,208,000,261,683,151,027,341,827,977,704,784,635,868,170,164,365,024,153,691,398,281,
264,810,213,092,761,244,896,359,928,705,114,964,975,419,909,342,221,566,832,572,080,821,333,186,
116,811,553,615,836,546,984,046,708,975,602,900,950,537,616,475,847,728,421,889,679,646,244,945,
160,765,353,408,198,901,385,442,487,984,959,953,319,101,723,355,556,602,139,450,399,736,280,750,
137,837,615,307,127,761,926,849,034,352,625,200,015,888,535,147,331,611,702,103,968,175,921,510,
907,788,019,393,178,114,194,545,257,223,865,541,461,062,892,187,960,223,838,971,476,088,506,276,
862,967,146,674,697,562,911,234,082,439,208,160,153,780,889,893,964,518,263,243,671,616,762,179,
168,909,779,911,903,754,031,274,622,289,988,005,195,444,414,282,012,187,361,745,992,642,956,581,
746,628,302,955,570,299,024,324,153,181,617,210,465,832,036,786,906,117,260,158,783,520,751,516,
284,225,540,265,170,483,304,226,143,974,286,933,061,690,897,968,482,590,125,458,327,168,226,458,
066,526,769,958,652,682,272,807,075,781,391,858,178,889,652,208,164,348,344,825,993,266,043,367,
660,176,999,612,831,860,788,386,150,279,465,955,131,156,552,036,093,988,180,612,138,558,600,301,
435,694,527,224,206,344,631,797,460,594,682,573,103,790,084,024,432,438,465,657,245,014,402,821,
885,252,470,935,190,620,929,023,136,493,273,497,565,513,958,720,559,654,228,749,774,011,413,346,
962,715,422,845,862,377,387,538,230,483,865,688,976,461,927,383,814,900,140,767,310,446,640,259,
899,490,222,221,765,904,339,901,886,018,566,526,485,061,799,702,356,193,897,017,860,040,811,889,
729,918,311,021,171,229,845,901,641,921,068,884,387,121,855,646,124,960,798,722,908,519,296,819,
372,388,642,614,839,657,382,291,123,125,024,186,649,353,143,970,137,428,531,926,649,875,337,218,
940,694,281,434,118,520,158,014,123,344,828,015,051,399,694,290,153,483,077,644,569,099,073,152,
433,278,288,269,864,602,789,864,321,139,083,506,217,095,002,597,389,863,554,277,196,742,822,248,
757,586,765,752,344,220,207,573,630,569,498,825,087,968,928,162,753,848,863,396,909,959,826,280,
956,121,450,994,871,701,244,516,461,260,379,029,309,120,889,086,942,028,510,640,182,154,399,457,
156,805,941,872,748,998,094,254,742,173,582,401,063,677,404,595,741,785,160,829,230,135,358,081,
840,096,996,372,524,230,560,855,903,700,624,271,243,416,909,004,153,690,105,933,983,835,777,939,
410,970,027,753,472,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,
000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000!

402,387,260,077,093,773,543,702,433,923,003,985,719,374,864,210,714,632,543,799,910,429,938,512,
398,629,020,592,044,208,486,969,404,800,479,988,610,197,196,058,631,666,872,994,808,558,901,323,
829,669,944,590,997,424,504,087,073,759,918,823,627,727,188,732,519,779,505,950,995,276,120,874,
975,462,497,043,601,418,278,094,646,496,291,056,393,887,437,886,487,337,119,181,045,825,783,647,
849,977,012,476,632,889,835,955,735,432,513,185,323,958,463,075,557,409,114,262,417,474,349,347,
553,428,646,576,611,667,797,396,668,820,291,207,379,143,853,719,588,249,808,126,867,838,374,559,
731,746,136,085,379,534,524,221,586,593,201,928,090,878,297,308,431,392,844,403,281,231,558,611,
036,976,801,357,304,216,168,747,609,675,871,348,312,025,478,589,320,767,169,132,448,426,236,131,
412,508,780,208,000,261,683,151,027,341,827,977,704,784,635,868,170,164,365,024,153,691,398,281,
264,810,213,092,761,244,896,359,928,705,114,964,975,419,909,342,221,566,832,572,080,821,333,186,
116,811,553,615,836,546,984,046,708,975,602,900,950,537,616,475,847,728,421,889,679,646,244,945,
160,765,353,408,198,901,385,442,487,984,959,953,319,101,723,355,556,602,139,450,399,736,280,750,
137,837,615,307,127,761,926,849,034,352,625,200,015,888,535,147,331,611,702,103,968,175,921,510,
907,788,019,393,178,114,194,545,257,223,865,541,461,062,892,187,960,223,838,971,476,088,506,276,
862,967,146,674,697,562,911,234,082,439,208,160,153,780,889,893,964,518,263,243,671,616,762,179,
168,909,779,911,903,754,031,274,622,289,988,005,195,444,414,282,012,187,361,745,992,642,956,581,
746,628,302,955,570,299,024,324,153,181,617,210,465,832,036,786,906,117,260,158,783,520,751,516,
284,225,540,265,170,483,304,226,143,974,286,933,061,690,897,968,482,590,125,458,327,168,226,458,
066,526,769,958,652,682,272,807,075,781,391,858,178,889,652,208,164,348,344,825,993,266,043,367,
660,176,999,612,831,860,788,386,150,279,465,955,131,156,552,036,093,988,180,612,138,558,600,301,
435,694,527,224,206,344,631,797,460,594,682,573,103,790,084,024,432,438,465,657,245,014,402,821,
885,252,470,935,190,620,929,023,136,493,273,497,565,513,958,720,559,654,228,749,774,011,413,346,
962,715,422,845,862,377,387,538,230,483,865,688,976,461,927,383,814,900,140,767,310,446,640,259,
899,490,222,221,765,904,339,901,886,018,566,526,485,061,799,702,356,193,897,017,860,040,811,889,
729,918,311,021,171,229,845,901,641,921,068,884,387,121,855,646,124,960,798,722,908,519,296,819,
372,388,642,614,839,657,382,291,123,125,024,186,649,353,143,970,137,428,531,926,649,875,337,218,
940,694,281,434,118,520,158,014,123,344,828,015,051,399,694,290,153,483,077,644,569,099,073,152,
433,278,288,269,864,602,789,864,321,139,083,506,217,095,002,597,389,863,554,277,196,742,822,248,
757,586,765,752,344,220,207,573,630,569,498,825,087,968,928,162,753,848,863,396,909,959,826,280,
956,121,450,994,871,701,244,516,461,260,379,029,309,120,889,086,942,028,510,640,182,154,399,457,
156,805,941,872,748,998,094,254,742,173,582,401,063,677,404,595,741,785,160,829,230,135,358,081,
840,096,996,372,524,230,560,855,903,700,624,271,243,416,909,004,153,690,105,933,983,835,777,939,
410,970,027,753,472,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,
000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000!

And(as(N(grows,(they(accumulate!(

That's(249(trailing(zeros!(

Helper(funcJon(#1(

public int countZeros (int n) {!
!if (n < 10) {!
! !return 0;!
!} else if (n % 10 == 0) {!
! return 1 + countZeros (n / 10);!
!} else {!
! !return countZeros (n / 10);!
!} !

}!

rascal> int i = fact(1000);!
int: 4023872600770…!
rascal> countZeros(i);!
int: 472!

Helper(funcJon(#1,(v1.1(

public int countTrailingZeros (int n) {!
!if (n < 10) {!
! !return 0;!
!} else if (n % 10 == 0) {!
! return 1 + countTrailingZeros (n / 10);!
!} else {!
! !return 0 ;!
!} !

}!

rascal> countTrailingZeros(i);!
int: 249!

Helper(funcJon(#2(—(Let’s(play(around(

public void printLastTwenty (int n){!
!for(int i <- [n-19..n]) {!
! println ("<i>! has <countTrailingZeros(fact(i))> ”!
! ! !+ ”trailing zeros.");!
!}!

}!

rascal>printLastTwenty(1000);!
981! has 243 trailing zeros.!
982! has 243 trailing zeros.!
983! has 243 trailing zeros.!
984! has 243 trailing zeros.!
985! has 244 trailing zeros.!
986! has 244 trailing zeros.!
987! has 244 trailing zeros.!
988! has 244 trailing zeros.!
989! has 244 trailing zeros.!
990! has 245 trailing zeros.!

991! has 245 trailing zeros.!
992! has 245 trailing zeros.!
993! has 245 trailing zeros.!
994! has 245 trailing zeros.!
995! has 246 trailing zeros.!
996! has 246 trailing zeros.!
997! has 246 trailing zeros.!
998! has 246 trailing zeros.!
999! has 246 trailing zeros.!
1000! has 249 trailing zeros.!
ok!

Looking(for(lumps(
public void findLumps (int n) {!

!int iMinusOneFactZeros(= 0;!
!for (int i <- [1..n]) {!
! int iFactZeros = countTrailingZeros(fact(i));!
! int diff = iFactZeros - iMinusOneFactZeros(;!
! if (diff >= 1) {!
! println ("<diff> more zeros at <i>!");!
! }!
! iMinusOneFactZeros(= iFactZeros;!
!}!

}!

rascal>findLumps(1000);!
1 more zeros at 5!!
1 more zeros at 10!!
1 more zeros at 15!!
1 more zeros at 20!!
2 more zeros at 25!!
1 more zeros at 30!!
1 more zeros at 35!!

1 more zeros at 40!!
1 more zeros at 45!!
2 more zeros at 50!!
1 more zeros at 55!!
1 more zeros at 60!!
1 more zeros at 65!!
1 more zeros at 70!!
2 more zeros at 75!!

Looking(for(lumps(

1 more zeros at 80!!
1 more zeros at 85!!
1 more zeros at 90!!
1 more zeros at 95!!
2 more zeros at 100!!
1 more zeros at 105!!
1 more zeros at 110!!
1 more zeros at 115!!
1 more zeros at 120!!
3 more zeros at 125!!
1 more zeros at 130!!
…!
1 more zeros at 245!!
3 more zeros at 250!!
1 more zeros at 255!!

1 more zeros at 495!!
3 more zeros at 500!!
1 more zeros at 505!!
…!
1 more zeros at 620!!
4 more zeros at 625!!
1 more zeros at 630!!
…!
1 more zeros at 985!!
1 more zeros at 990!!
1 more zeros at 995!!
3 more zeros at 1000!!
ok!

Helper(funcJon(#3,(v1.1(

•  We(can(parameterize(the(threshold(to(look(for(jumps(

of(2,(3,(or(4(zeros(

public void findLumps2 (int n, int tao) {!
!int iMinusOneFactZeros(= 0;!
!for (int i <- [1..n]) {!
! int iFactZeros = countTrailingZeros(fact(i));!
! int diff = iFactZeros - iMinusOneFactZeros(;!
! if (diff >= tao) {!
! println ("<diff> more zeros at <i>!");!
! }!
! iMinusOneFactZeros(= iFactZeros;!
!}!

}!

Looking(for(lumps(

rascal>findLumps2(1000,2);!
2 more zeros at 25!!
2 more zeros at 50!!
2 more zeros at 75!!
2 more zeros at 100!!
3 more zeros at 125!!
2 more zeros at 150!!
2 more zeros at 175!!
2 more zeros at 200!!
2 more zeros at 225!!
3 more zeros at 250!!
2 more zeros at 275!!
…!
2 more zeros at 950!!
2 more zeros at 975!!
3 more zeros at 1000!!
ok!

rascal>findLumps2(1000,3);!
3 more zeros at 125!!
3 more zeros at 250!!
3 more zeros at 375!!
3 more zeros at 500!!
4 more zeros at 625!!
3 more zeros at 750!!
3 more zeros at 875!!
3 more zeros at 1000!!
ok!

rascal>findLumps2(1000,4);!
4 more zeros at 625!!
ok!

50(=(1(

51(=(5(

52(=(25(

53(=(125(

54(=(625(

55(=(3125(

An(analyJc(soluJon(

Let(N(be(a(posiJve(integer.(((

Let(k'='floor'(log
5
'N)'

Start(a(counter(at(zero,(call(it(nz'

We(want(to(examine(i'<O'[1..N]'

If'i''is(not(divisible(by(5,(ignore(it(

If('i''is(divisible(by(5,(add(1(to(nz'

If('i''is(also(divisible(by(25,(add(1(more(

…(

If('i'is(also(divisible(by(2k,(add(1(more(

(

Final(funcJons(

public int predictZeros (int N) {!
!int k = floorLogBase(N, 5);!
!int nz = 0;!
!for (int i <- [1..N]){!
! !int p5 = 1;!

 !for (int j <- [1..k]) {!
 ! !p5 *= 5;!
 ! !if (i % p5 == 0) {!

! ! ! !nz += 1;!
! ! !} else {!

 ! !break;!
! ! !}!
! !}!
!}!
!return nz; !

}!

public void verifyTheory (int N) {!
!int checkInterval = 100; // for printing!
!bool failed = false;!
!for (int i <- [1..N]) {!

 !ifact=fact(i);!
 !int p = predictZeros(i);!
 !int c = countTrailingZeros(ifact);!
 !if (p != c) {!

! ! !failed = true;!
! ! !println (“Found a counter example at i=<i>");!
! ! !break;!

 !} else {!
! ! !if (i % checkInterval == 0) {!
! ! ! !println ("<i>! has <p> trailing zeros");!
! ! !}!
! !}!
!}!
!if (!failed) {!
! !println ("The theory works for i: 1..<N>”);!
!(}(

}!

Time(to(celebrate!(

rascal>verifyTheory(10);(

The(theory(works(for(i:(1..10(

ok(

rascal>verifyTheory(100);(

100!(has(24(trailing(zeros(

The(theory(works(for(i:(1..100(

ok(

rascal>verifyTheory(1000);(

100!(has(24(trailing(zeros(

200!(has(49(trailing(zeros(

300!(has(74(trailing(zeros(

400!(has(99(trailing(zeros(

500!(has(124(trailing(zeros(

600!(has(148(trailing(zeros(

Found&a&counter&example&at&i=625&
&&&&predicted&zeros&=&155&
&&&&observed&zeros&&=&156&
ok!

Looking(under(the(hood(
// I wrote these little wrappers.!
!
// Log for an arbitrary base!
public real logB(real a, real base) {!
 return log(a) / log(base);!
}!
!
public real floor (real a) {!

!return toReal(round (a - 0.5));!
}!
!
public int floorLogBase (int a, int b) {!
 return toInt(floor(logB(toReal(a), toReal(b))));!
}!

rascal>floorLogBase(625,5);(

int:(3(

rascal>logB(625.0,5.0);(

real:(3.9999999999999998757330130880776320985295476764801684……..(

A(bad(fix((that(kinda(works)(

// I wrote these little wrappers.!
!
// Log for an arbitrary base!
public real logB(real a, real base) {!
 return log(a) / log(base);!
}!
!
public real floor (real a) {!

!return toReal(round (a - 0.5 + 0.00001));!
}!
!
public int floorLogBase (int a, int b) {!
 return toInt(floor(logB(toReal(a), toReal(b))));!
}!

A(be[er,(exact(soluJon(

// Also change predictZeros to call this version!
public int floorLogBase2 (int a, int b) {!

!int remaining = a;!
!int ans = 0;!
!while (remaining >= b) {!
! !ans += 1;!
! !remaining /= b;!
!}!
!return ans; ! !!

}!

rascal>verifyTheory(1000);(

100!(has(24(trailing(zeros(

200!(has(49(trailing(zeros(

300!(has(74(trailing(zeros(

400!(has(99(trailing(zeros(

500!(has(124(trailing(zeros(

600!(has(148(trailing(zeros(

700!(has(174(trailing(zeros(

800!(has(199(trailing(zeros(

900!(has(224(trailing(zeros(

1000!(has(249(trailing(zeros(

The(theory(works(for(i:(1..1000(

ok(

Lessons?(

•  Explore(the(terrain,(take(notes,(build(intuiJon,(develop(
theories,(test(them(

–  Refine,(repeat(
–  Double(check(

•  Build(infrastructure(with(natural(“break(points”(
–  Understandable(>>(fast,(esp.(in(the(beginning(
–  The(correct(way(>>(the(easy(way,((

•  The(correct(way(may(be(pre[y(easy(too(

•  Document(and(later(challenge(your(assumpJons((

–  Are(you(measuring(what(you(think(you(are(measuring?(

What(history(taught(me(

•  Study(what(you(already(have(and(understand(
–  O<en,(your(intuiJon(is(golden(
–  Take(it(apart(and(see(how(it(works((e.g.,(Linux(study)(

•  Challenge(precconceived(noJons(
–  Create(testable(hypotheses(+(evaluate(them((e.g.,(cloning)(

•  So<ware(archives(contain(lots(of(rich(data(
–  But(need(to(process,(link,(mine(the(arJfacts(

•  Need(to(conJnually(recexamine(reasonableness(of(
assumpJons(
–  Don't(blindly(trust(the(numbers;(dig(and(validate!(

Listening(to(big(data(

(

Or,(philately(will(get(you(everywhere(

Mike(Godfrey ((

So<ware(Architecture(Group(

University(of(Waterloo(

