
The “Naturalness” of Software:
A Research Vision

Abram Hindle, Earl Barr, Zhendong Su,	

Mark Gabel, and Premkumar Devanbu

100%	

Natural
100%	

Natural

public class FunctionCall {!
 public static void funct1 () {!
! System.out.println ("Inside funct1");!
 }!
 public static void main (String[] args) {!
 int val;!
 System.out.println ("Inside main");!
 funct1();!
 System.out.println ("About to call funct2");!
 val = funct2(8);!
 System.out.println ("funct2 returned a value of " + val);!
 System.out.println ("About to call funct2 again");!
 val = funct2(-3);!
 System.out.println ("funct2 returned a value of " + val);!
 }!
 public static int funct2 (int param) {!
 System.out.println ("Inside funct2 with param " + param);!
 return param * 2;!
 }!
}!!

100%	

Natural

English, Tamil, German
Can be rich, powerful, expressive

Statistical Models

..but “in nature” are mostly simple, repetitive, boring

Can be rich, powerful, expressive

Mostly simple, repetitive, boring

Statistical Models

Two Examples

A speech recognizer example

Another speech recognizer example

“European Central Fish” ?

“fish++” ?

Repetition

Mathematical Models

Useful Software

Is software really
repetitive?

The “Uniqueness” of
Code

Mark Gabel Zhendong Su

A study of the Uniqueness of Source Code, Gabel and Su, ACM SIGSOFT FSE 2010

How Redundant
is Code?

How much code? 6000 projects (C, C++, Java)	

430,000,000 LOC

How long? Sequences of 6-77 token
length

(1) How matched? Exact Match	

1-4 edits

(2) How matched? Raw Tokens	

Renamed Identifiers

Non-Uniqueness (Redundancy) in a Large Java
Corpus

Pe
rc

en
t

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens

Software is really
repetitive.

How can we use this?

How has the
“naturalness”

(repetitive structure)
of natural language

been exploited?

Large Corpora

Language Models

Speech Recognition,	

Translation, etc. 	

Language Models
For any utterance U, 	

 0  p(U)  1

p(“EuropeanCentralF ish”) < p(“EuropeanCentralBank”)

If U
a
 is often uttered than U

b
,	

!
p(Ua) > p(Ub)

p(for(i = 0; i < 10; fish + +)) < p(for(i = 0; i < 10; i + +))

file://localhost/Users/devanbu/talks/ngrams/speecheg3.band/

History of Language
Models in NLP

• Initially, “Rationalist Methods” based on linguistic and
logical theories... 	

• ...enter the “Empiricist” approach	

✓Most “natural” utterances are repetitive, simple	

✓Faster computers + large on-line corpora	

➡ Good, high quality language models 	

➡ Rapid, revolutionary advances

“Every time I fire a linguist,	

the performance of our	

speech recognizer goes up” 	

—Fred Jelenik

Good Language Models have been used for: 	

➡Speech recognition	

➡Natural language translation	

➡Document summarization	

➡Document retrieval

Language Models:
a Revolution in NLP
The design and estimation	

of language models	

is at the heart	

of modern NLP

But what about code?
and

 “code language models”?

Exploiting Code Language Models

Suggest the next token for developers	

Complete the current token for developers	

Assistive (speech, gesture) coding 	

Summarization and retrieval as translation	

Fast, “good guess” static analysis 	

Search-based Software Engineering

Building a Language Model
Large Text	

Corpus 

(Training)  
Statistical	

Model	

Design

Estimation 
Algorithm

Model

Evaluation
Model  
Quality  

Large Text	

Corpus 
(Test)  

Estimated using	

frequency of occurrence!

What a Language Model Does

Language 
Model

..of the European Central Bank

p(of) p(the) p(European) p(Central) p(Bank)p(Bank)p(European) p(Central)

Language	

Models

Vastly more complex

Novel, NLP-specific estimation methods

Almost always face data-sparsity

Evaluating Language
Model Quality

The words it encounters are not “too
surprising” to it.	

 Frequently encountered language events
are assigned higher probability	

 Infrequent language events are assigned
lower probability. 	

....measured using “Cross-Entropy”

Background
Cross Entropy

Language 
Model

public class FunctionCall {!
 public static void funct1 () {!
! System.out.println ("Inside funct1");!
 }!
 public static void main (String[] args) {!
 int val;!
 System.out.println ("Inside main");!
 funct1();!
 System.out.println ("About to call funct2");!
 val = funct2(8);!
 System.out.println ("funct2 returned a value of " + val);!
 System.out.println ("About to call funct2 again");!
 val = funct2(-3);!
 System.out.println ("funct2 returned a value of " + val);!
 }!
 public static int funct2 (int param) {!
 System.out.println ("Inside funct2 with param " + param);!
 return param * 2;!
 }!
}!!

Good  
Description?

Background
Cross Entropy

Language 
Model

public class FunctionCall {!
 public static void funct1 () {!
! System.out.println ("Inside funct1");!
 }!
 public static void main (String[] args) {!
 int val;!
 System.out.println ("Inside main");!
 funct1();!
 System.out.println ("About to call funct2");!
 val = funct2(8);!
 System.out.println ("funct2 returned a value of " + val);!
 System.out.println ("About to call funct2 again");!
 val = funct2(-3);!
 System.out.println ("funct2 returned a value of " + val);!
 }!
 public static int funct2 (int param) {!
 System.out.println ("Inside funct2 with param " + param);!
 return param * 2;!
 }!
}!!

Good  
Description?

Low Cross Entropy!!

Background
Cross Entropy

Language 
Model

public class FunctionCall {!
 public static void funct1 () {!
! System.out.println ("Inside funct1");!
 }!
 public static void main (String[] args) {!
 int val;!
 System.out.println ("Inside main");!
 funct1();!
 System.out.println ("About to call funct2");!
 val = funct2(8);!
 System.out.println ("funct2 returned a value of " + val);!
 System.out.println ("About to call funct2 again");!
 val = funct2(-3);!
 System.out.println ("funct2 returned a value of " + val);!
 }!
 public static int funct2 (int param) {!
 System.out.println ("Inside funct2 with param " + param);!
 return param * 2;!
 }!
}!!

Good  
Description?

High Cross Entropy!!

Cross entropy 

Measuring Goodness:
Cross entropy

1

n

nX

i=1

�log(p(ei))

Lower if Model
assigns	

High-Probability  
to frequent events 

Higher if Model
assigns	

Low-Probability  
to frequent events 

For a document	

with 	

n words 

probability	

assigned by	

Model to word 

What
language model

gives
low cross-entropy?

n-gram models

• Intuition: Local Context Helps	

• Examples (NL, then code) 	

• multiple choice question	

• item = item→next	

!

What is	

This?

What is	

This?

More context helps more!	

n-gram models of code:
Experimental Results

Java Datasets

C Datasets

N-gram Cross
Entropy

0

2.5

5

7.5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

Five Bits!

3-4 Bits!

The Skeptic Asks...
Is it just that C, Java, Python... are simpler
than English? 	

➡ Do cross-project testing!	

➡ Train on one project, test on the others	

➡ If it’s all “in the language”, entropy should
be similar

Train on one project, test on the others.

Ant Batik Cassandra Eclipse Log4j Lucene Maven2 Maven3 Xalan−J Xerces2

2
4

6
8

1
0

1
2

1
4

Corpus Projects

C
ro

ss
 E

n
tr

o
p
y

Self Cross Entropy

Train on one Ubuntu application domain, 	

test on the others.

●

●

●

●

●

●

●

●

●

●

●

●

Admin Doc Graphics Interpreters Mail Net Sound Tex Text Web

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

Corpus Categories

C
ro

ss
 E

n
tr

o
p
y

Self Cross Entropy

116

22 21

23 15
86 26

135 118

31

Suggest the next token for developers	

Complete the current token for developers	

Assistive (speech, gesture) coding 	

Summarization and retrieval as translation	

Stupid, statistical, static analysis	

Search-based Software Engineering

Suggest the next token for developers

The “Naturalness” Vision

Suggesting Tokens

What token could appear
here?

What token has most often
appeared here?

Uses
Type, Scope,  

Etc !

Use just
previous

two tokens!

Do n-grams help?
Eclipse	

Suggestion	

Engine 

Suggestion	

from	

Language	

Model

Merge 
Algorithm

Evaluation

Additional	

Benefit.	

from	

Language	

Model  

Test Set  
(existing	

code)  

Additional	

Benefit	

from 	

Language	

Model  

How many more
correct suggestions?

Suggestion1

Suggestion2

Suggestion1

Suggestion2

Suggestion3

Suggestion4

Suggestion5

Suggestion6

Suggestion1

Suggestion2

Suggestion3

Suggestion4

Suggestion5

Suggestion6

Suggestion7

Suggestion8

Suggestion9

Suggestion10

Language Models	

ALWAYS

improve performance

more

●

●

●

●

●

● ● ●

●

● ●
● ●

0

20

40

60

80

100

120

P
e

rc
e

n
t

G
a

in
 o

ve
r

E
cl

ip
se

R
a
w

 G
a

in
 (

co
u

n
t)

0

1000

2000

3000

4000

3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

● Percent Gain
Raw Gain (count)

Suggestion1

Suggestion2
Improved performance	

at every token length

N-Gram suggestions 	

always add value to

the native Eclipse suggestion engine,	

in a very large trial.

Can be rich, powerful, expressive

Mostly simple, repetitive, boring

Statistical Models

Suggest the next token for developers	

Complete the current token for developers	

Assistive (speech, gesture) coding	

Summarization and retrieval as translation	

Fast, “good guess” static analysis	

Search-based Software Engineering

Suggest the next token for developers	

The “Naturalness” Vision

????? ?????

Assisted Coding

Eclipse

Dasher++

Rachel
Aurand	

(Graduate	

Student)

The “Naturalness” Vision

Suggest the next token for developers	

Complete the current token for developers	

Assistive (speech, gesture) coding 	

Summarization and retrieval as translation	

Fast, “good guess” static analysis 	

Search-based Software Engineering

Noisy Channel Model

p(E | F) =
p(F | E).p(E)

p(F)

“Comment allez vous? ”
What was the most likely English

sentence	

he was trying to say?

He’s trying to speak English, but it is
systematically “messed up” into French.

Oh, it
must be:  

 
 “Fine, thank you, How are you?”	

!

May be he’s saying:  
 “Do you comment all your code?”

Most Likely 	

English Sentence

Most Likely 	

way  

“it got messed up”

Maximize Numerator	

over “E” to get	

best translation

Normalizing	

Constant

p(E | F) =
p(F | E).p(E)

p(F)

English Language 
Model

Joint Distribution from	

Aligned Corpus

Normalizing	

Constant

p(E | F) =
p(F | E).p(E)

p(F)

Where do the
probability distributions	

come from?

Noisy Channel Model
Toast.makeText(context,

“hello”, 5).show(); What was the most likely 	

English summary of this code?

He’s trying to speak English, but it
comes out funny-sounding

Oh, it
must be:  

 “Pop up a message window!”	

Maybe his code means 
 “Make me some toast?”

p(E | C) =
p(C | E).p(E)

p(C)

“Domain-Specific” 
English Language 

Model

Code-English	

Joint Corpus

Normalizing	

Constant

Where do the
probability distributions	

come from?

p(E | C) =
p(C | E).p(E)

p(C)

The “Naturalness” Vision

Suggest or Complete next tokens 	

Assistive (speech, gesture) coding 	

Summarization and Retrieval as Translation	

Learn and Enforce Coding Conventions	

Syntax Errors	

Machine Translation for Porting	

Fast, “good guess” static analysis 	

Search-based Software Engineering

