
The calculator problem and
the evolutionary synthesis

of arbitrary software
CREST Open Workshop on Genetic Programming

for Software Engineering

October 14, 2013

Lee Spector
Hampshire College
Amherst, MA USA

Tests

Software

?

?

?

Outline

• Arbitrary software

• Requirements and ways to meet them

• Tags, uniform variation, and lexicase selection

• The calculator problem

• Other problems and prospects

Arbitrary Software

• OS utilities

• Word processors

• Web browsers

• Accounting systems

• Image processing systems

• Everything

Arbitrary Software

• May be stateful, with multiple entry points

• May have a variety of interfaces involving a
variety of types

• May require arbitrary Turing-computable
functions

• Can be specified with behavioral tests

Requirements

• Represent and evolve arbitrary computable
functions on arbitrary types (Push, uniform
variation)

• Represent and evolve arbitrary computational
architectures (modules; tags, tagged entry points)

• Drive evolution with performance tests (lexicase
selection)

Evolutionary Computation

Genetic Programming

• Evolutionary computing to produce
executable computer programs

• Programs are assessed by executing them

• Automatic programming; producing software

• Potential (?): evolve software at all scales,
including and surpassing the most ambitious
and successful products of human software
engineering

Program Representations
• Lisp-style symbolic expressions (Koza, ...).

• Purely functional/lambda expressions (Walsh, Yu, ...).

• Linear sequences of machine/byte code (Nordin et al., ...).

• Artificial assembly-like languages (Ray, Adami, ...).

• Stack-based languages (Perkis, Spector, Stoffel, Tchernev, ...).

• Graph-structured programs (Teller, Globus, ...).

• Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

• Fuzzy rule systems (Tunstel, Jamshidi, ...)

• Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

• Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Evolvability

The fact that a computation can be expressed
in a formalism does not imply that a correct
program can be produced in that formalism by
a human programmer or by an evolutionary
process.

Data/Control Structure

• Data abstraction and organization

Data types, variables, name spaces, data
structures, ...

• Control abstraction and organization

Conditionals, loops, modules, threads, ...

Structure via GP (1)

• Specialize GP techniques to support human
programming language abstractions

• Strongly typed genetic programming

• Automatically defined functions/macros

• Architecture altering operations

• Map from unstructured genomes to
programs in languages that support
abstraction (e.g. via grammars)

Structure via GP (2)

• Forget about human programming
abstractions (mostly)

• Evolve programs in a minimal-syntax
language that nonetheless supports a full
range of data and control abstractions

• For example: orchestrate data flows via
stacks, not via syntax

• Push

Push

• A programming language developed specifically for
evolutionary computation, as the language in which
evolving programs are expressed

• Intended to maximize the evolvability of arbitrary
computational processes

Push

• Stack-based postfix language with one stack per type

• Types include: integer, float, boolean, code, exec,
vector, matrix, quantum gate, [add more as needed]

• Missing argument? NO-OP

• Minimal syntax:
program → instruction | literal | (program*)

Why Push?
• Highly expressive: data types, data structures,

variables, conditionals, loops, recursion,
modules, ...

• Elegant: minimal syntax and a simple, stack-based
execution architecture

• Elegance simplifies a variety of things ranging
from uniform variation to meta-evolution

• Evolvable

• Extensible

Sample Push Instructions
Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER
Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

programming (e.g. [15, 27, 28]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is it-
self a native type in Push. A Push program can put code

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [25].

on the CODE stack (for example, dwith the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results
in earlier versions of Push are described elsewhere [21, 26,
22, 25].

Code manipulation by evolving programs can also support
entirely new forms of evolutionary computation such as “au-
toconstructive evolution,” in which evolving programs must
generate their own offspring, eschewing hardcoded genetic
operators in favor of evolved genetic operators that are im-
plemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [21, 23, 24].

3. THE PUSH3 EXEC STACK
3.1 Push Program Interpretation
The most significant change to the Push language in Push3
is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE
stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*
or CODE.DO*TIMES; such instructions are now implemented
by moving code to the EXEC stack. In contrast the EXEC
stack holds the code that is queued for execution in the in-
terpereter, and it is continuously executed. Although the
EXEC stack execution model of Push3 is backward compati-
ble with program execution in Push2, it nonetheless repre-
sents a fundamental change in the way that Push programs
are executed and it does so in a way that provides new op-
portunities for the evolution of arbitrary control.

In Push2, programs were executed according to the following
algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

Push(3) Semantics

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES) are
expressed in Push3 as sequences of instructions that pushed
onto the EXEC stack and subsequently executed by the loop
in step 2 above. The CODE.DO*COUNT instruction, for exam-
ple, was implemented in Push2 as a loop in the Push inter-
preter’s native language that would repeatedly push counter
values on to the INTEGER stack and then execute code from
the CODE stack. In Push3, the CODE.DO*COUNT instruction
simply pushes code (including a recursive call) and integers
onto the EXEC stack, and the continued execution of elements
from the EXEC stack produces the same results. Other fea-
tures of Push can also be more elegantly implemented in
Push3 than in Push2; for example the CODE.QUOTE instruc-
tion, which formerly required an exception to the standard
evaluation rule and a global flag, can now be implemented
simply by copying the top of the EXEC stack to the CODE
stack (making it the inverse of CODE.DO*).

At first glance the use of the EXEC stack does not appear
to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC stack
in reverse order, EXEC instructions have the property of oper-
ating on elements in the code which come after them, unlike
operators applied to other types which use the postfix nota-
tion standard in stack-based languages. The following two
programs fragments, for example, both produce the same
results:

(5 CODE.QUOTE (INTEGER.+) CODE.DO*COUNT)
(5 EXEC.DO*COUNT (INTEGER.+))

3.2 Combinators
The stack manipulation instructions that are provided for all
types in Push can be used to manipulate the EXEC stack, but
the EXEC stack can also be manipulated with Push versions
of the standard combinators K, S and Y [19, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC
stack.

The combinator EXEC.K simply removes the second element
from the EXEC stack. For example, if the EXEC stack contains
(A, B, C) then executing EXEC.K yields (A, C). The combi-
nator EXEC.S pops three items, A, B and C from the EXEC
stack and then pushes back three separate items: (B, C),
C and A (leaving the A on top). Note that this produces
two calls to C. The fixed point Y -combinator instruction
EXEC.Y can also be used to implement recursion using anony-
mous expressions on the EXEC stack; it inspects (but does not
pop) the top of the EXEC stack, A, and then inserts the list
(EXEC.Y A) as the second item on the EXEC stack. By itself,
this generates an endlessly recursive call to the unnamed
non-recursive “function” A. Recursion can be terminated
through further manipulation of the EXEC stack that may
occur, possibly conditionally, within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of a
Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when using
Push programs as controllers in time sensitive applications.
In these situations, Push programs cannot be allowed to run
until they are complete or until a loop terminates—there
may be strict limits on the number of Push instructions that
can be executed per time-step. The re-entrant interpreter
allows for the controlled execution of a particular number of
instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound
to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:
(TIMES2 CODE.QUOTE (2 INTEGER.*) CODE.SET)

Push3:
(TIMES2 EXEC.DEFINE (2 INTEGER.*))

Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

2

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)

exec code bool int float

3

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

INTEGER.*

4.1

5.2

FLOAT.+

TRUE

FALSE 3

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
2

exec code bool int float

4.1

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6

exec code bool int float

5.2

FLOAT.+

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

FLOAT.+

TRUE

FALSE 5.2

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 4.1

exec code bool int float

TRUE

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

FALSE

BOOLEAN.OR
(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

(2 3 INTEGER.* 4.1 5.2
FLOAT.+ TRUE FALSE

BOOLEAN.OR)
TRUE 6 9.3

exec code bool int float

No Time to Show How

• Push enables a trivial form of auto-simplification

• Push programs are often robust to reordering
and other changes, producing a search space
with high neutrality

• Push programs that modify their own code and/
or the execution stack dynamically can thereby
implement arbitrary control structures and
several forms of modularity

Calculator Test Cases
Keys pressed => number, error flag

• Digit entry tests

• Digit entry pair tests

• Double digit float entry tests

• Single digit math tests

• Single digit incomplete math tests

• Single digit chained math tests

• Division by zero tests

Digit Entry Tests

• :zero => 0.0, false

• :one => 1.0, false

• :two => 2.0, false

• :three => 3.0, false

• ...

Digit Entry Pair Tests

• :zero :zero => 0.0, false

• :zero :one => 1.0, false

• :two :three => 23.0, false

• :nine :nine => 99.0, false

• ...

Float Entry Tests

• :zero :point :nine => 0.9, false

• :zero :point :two => 0.2 false

• :seven :point :nine => 7.9, false

• :three :point :two => 3.2, false

• ...

Single Digit Math Tests

• :zero :plus :nine :equals => 9.0, false

• :three :times :four :equals => 12.0, false

• :three :minus :nine :equals => -6.0, false

• :three :divided-by :four :equals => 0.75, false

• ...

Incomplete Math Tests

• :three :plus :four => 4.0, false

• :seven :plus => 7.0, false

• ...

Chained Math Tests

• :three :plus :nine :minus :five :equals
=> 7.0, false

• :three :times :two :divided-by :eight :equals
=> 0.75, false

• :three :divided-by :nine :minus :five :equals
=> -4.6666665, false

• ...

Division by Zero Tests

• :zero :divided-by :zero :equals => 0.0, true

• :seven :divided-by :zero :equals => 0.0, true

• :three :divided-by :zero :equals => 0.0, true

• ...

Architectural Requirements

• Every key press is an entry point

• Answers (a floating point number and a
boolean value) should provided after every
key press

• State must be maintained between key
presses

• Stacks + tags provide an elegant way to
meet these requirements

Holland’s Tags
• Initially arbitrary identifiers that come to

have meaning over time

• Matches may be inexact

• Appear to be present in some form in many
different kinds of complex adaptive systems

• Examples range from immune systems to
armies on a battlefield

• A general tool for the support of emergent
complexity

• Include instructions that tag code (modules)

• Include instructions that recall and execute
modules by closest matching tag

• If a single module has been tagged then all tag
references will recall modules

• The number of tagged modules can grow
incrementally over evolutionary time

• Expressive and evolvable

Tag-based Modules

Calculator Architecture

• Run program once to tag modules

• Clear stacks

• For each pressed key, execute the module
that best matches the corresponding tag,
maintaining stacks across key presses

• The top of the float stack is the number
output; the top of the boolean stack is the
error flag output

And?

With Push and the tagged-entry-point architecture
we can run GP on the calculator problem.

And it fails miserably:

• Large programs are required

• Must allow growth without bloating

• Must allow arbitrary recombination

Uniform Variation

• All genetic material that a child inherits
should be ≈ likely to be mutated

• Parts of both parents should be ≈ likely to
appear in children (at least if they are ≈ in
size), and to appear in a range of
combinations

Why Uniformity?

• No hiding from mutation

• All parts of parents subject to variation and
recombination

• Biological genetic variation, while not fully
uniform, has uniformity properties that
prevent some of the problems we see in
GP; e.g. just having more genes doesn’t
generally “protect” any of them

Prior Work
• Point mutations or “uniform crossovers” that

replace/swap nodes but only in restricted ways;
cannot change structure, has depth biases
(McKay et al, 1995; Page et al, 1998; Poli and
Langdon, 1998; Poli and Page, 2000; Semenkin and
Semenkina, 2012)

• Uniform mutation via size-based numbers of tree
replacements; depth biases, little demonstrated
benefit (McKay et al, 1995; Van Belle and Ackley,
2002)

ULTRA

• Achieve uniformity by treating genomes as linear
sequences, even if they are hierarchically structured

• Repair after transform to ensure structural validity

The ULTRA Operator
• Uniform Linear Transformation with

Repair and Alternation

• Linearize 2 parents, treating “(” and “)” as
ordinary tokens

• Start at the beginning of one parent and
copy tokens to the child, switching parents
stochastically (according to the alternation
rate, and subject to an alignment deviation)

• Post-process with uniform mutation
(according to a mutation rate) and repair

Parents:

(a b (c (d)) e (f g))

(1 (2 (3 4) 5) 6)

Result of alternation:

(a b 2 (3 4 d)) 6)

Result of repair:

(a (b 2 (3 4 d)) 6)

ULTRA on the
bioavailability problem

8 Lee Spector and Thomas Helmuth

of whether the RMSE results of two runs come from the same distribution using the
Kruskal-Wallis one-way analysis of variance at p = 0.01.

For the Pagie-1 problem we use mean error across fitness cases, and do not use a
test set. We present the number of successes and mean best fitnesses for the Pagie-1
runs. Mean best fitness (MBF) is the mean of the best individual fitnesses attained
in each run. The fitnesses given here are the mean errors across test cases, not the
sums of those errors. As recommended in (Luke and Panait, 2002; McDermott et al,
2012), we use unpaired t-tests to compare the differences in MBF for different con-
ditions.

5 Results

Fig. 1 Results from the
bioavailability problem. We
conducted 100 runs for each
choice of operators. The
RMSE of the best individuals
on the training fitness cases
(left) and on the test fitness
cases (right). In each plot,
subtree replacement 81/9/10
is plotted first, followed by
subtree replacement 45/45/10
and then ULTRA. In each box
plot, the box stretches from
the first quartile to the third
quartile with a line for the
median in the middle. The
whiskers extend to the fur-
thest value within 1.5 times
the inter-quartile range. Points
beyond the whiskers are out-
liers, plotted as points. Note
that in the right plot, 8 outliers
on the 81/9/10 set, 7 outliers
on the 45/45/10 set, and 3
outliers on the ULTRA set fell
outside the of the visible plot.

30

40

50

60

70

81/9/10 45/45/10 ULTRA

T
ra

in
 R

M
S

E

30

40

50

60

70

81/9/10 45/45/10 ULTRA

T
e

s
t

R
M

S
E

Figure 1 gives two box plots from our sets runs of the bioavailability problem,
where each set contains 300 runs. The left plot shows the root mean square error
(RMSE) of the best program as measured on the training set. The right plot shows
the RMSE of the same individuals on the test set. Both subtree replacement 81/9/10
and subtree replacement 45/45/10 differ statistically significantly from ULTRA on
both the training and test sets. ULTRA appears to be able to find more accurate

Uniform Linear Transformation with Repair and Alternation in Genetic Programming 9

Fig. 2 Program sizes for the
bioavailability problem.

0

100

200

300

400

500

0 25 50 75 100
Generation

M
e

a
n

 P
ro

g
ra

m
 S

iz
e

81/9/10

45/45/10

ULTRA

Table 3 Results on the Pagie-1 problem. We conducted 100 runs for each choice of operators.
MBF is the mean best fitness of the run. Note that the reported fitnesses are the mean errors over
test cases, not the summed errors.

Operators Successes MBF
Subtree Replacement 80/10/10 0 0.363
Subtree Replacement 45/45/10 0 0.319
ULTRA 15 0.036

models of the training data than subtree replacement without running into problems
of overfitting the data, which would lead to worse performance on the test set.

The mean program sizes with respect to evolutionary time are plotted in Figure 2.
The runs using subtree replacement show steady growth in program sizes, whereas
those using ULTRA quickly fall at the beginning of the run and then remain rela-
tively steady. The lower program sizes of ULTRA runs may contribute to its ability
to not overfit the data.

Table 3 presents the results of our experiments on the Pagie-1 problem. PushGP
using ULTRA found perfect solutions in 15 out of 100 runs, whereas runs with
subtree replacement found none with either parameter setting. The difference in
MBF between subtree replacement 80/10/10 and ULTRA, as well as subtree re-
placement 45/45/10 and ULTRA, is statistically significant based on an unpaired
t-test at p = 0.01. Note that the results for subtree replacement 45/45/10 are only

over 98 runs, with data from 2 runs yet to come.

The mean program sizes in our Pagie-1 experiments are given in Figure 3. Runs
using subtree replacement experienced quick code growth, reaching mean sizes near
the maximum program size of 500 within the first 50 generations. After this point,
it is difficult for the genetic operators to make changes to large programs without
exceeding the program size limit. On the other hand, the mean program sizes of
ULTRA runs quickly drop to around size 50, and then climb to approach 100. In
these runs, it is unlikely that many genetic operations will exceed the size limit.

With Push, the tagged-entry-point architecture, and
ULTRA... we still fail. But not quite as miserably.

Issues:

• Different test cases require qualitatively different
modes of response

• Numbers of cases of different types have an undue
influence

• Average performance across cases does not guide
search appropriately

And?

Lexicase Selection
• Each parent is selected by filtering the entire

population, one one case at a time (in random
order), keeping only the elite at each stage

• Useful for “modal” problems, which require
qualitatively different responses to different inputs

• Useful for “uncompromising” problems, in which
solutions must be optimal on each case

• All comparisons are “within case,” so may be
useful whenever cases are non-comparable

Lexicase Selection
Initialize:

Candidates = the entire population

Cases = a list of all of the test cases in random order

Loop:

Candidates = the subset of Candidates with exactly the best
performance of any current candidate for the first case in Cases

If Candidates or Cases contains just a single element then
return a randomly selected individual from Candidates

Otherwise remove the first case from Cases and go to Loop

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 5

(replaced with another random element) during a subsequent
traversal of the child program. We also conducted runs using
the standard genetic operators, but ULTRA performed better
in all conditions that we tried and didn’t change the relative
performance observed among conditions; hence, for simplicity,
we do not report those results here.

Push and PushGP implementations now exist in C++, Java,
JavaScript, Python, Common Lisp, Clojure, Scheme, Erlang,
Scala and R. Many of these are available for free download
from the Push project page.3

V. EXPERIMENTAL RESULTS

We used the tree GP and PushGP systems to test lexicase
selection on three problems: a problem from finite algebras,
a boolean digital multiplier problem, and a factorial symbolic
regression problem.

Since we are primarily interested in the abilities of our
algorithms to find perfect programs that achieve zero error
on every test case, we will focus our results on measures of
these successes. We present the success rate (i.e. number of
programs with zero error) and computational effort, as well as
mean best fitness, of the runs.

Computational effort measures the expected number of
individuals that the genetic programming algorithm needs to
evaluate in order to have a 99% confidence of finding a
solution. A lower computational effort means that fewer fitness
evaluations have to be made in order to find a solution. Com-
putational effort was computed as described by Koza [1, pp.
99–103]. Because computational effort cannot be calculated
for experiments in which no runs succeed, we do not always
report this measure. Mean best fitness (MBF) is the mean of
the best individual fitnesses attained in each run in a set of
runs. For all runs described here, fitness is defined as a measure
of error with lower numbers being better and solutions having
fitness values of zero.

The GP parameters that we used in our experiments are
presented in Table I. The parameters we used for the ULTRA
genetic operator are given in Table II.

A. Finite Algebras

Previous work in genetic programming for finite algebras
has created human-competitive results (and won a ”Humies”
Gold Prize)[20]. Here, we borrow a problem from that work
to use as a benchmark. This problem, which we will simply
call the “finite algebras problem,” is to find a Mal’cev term in
a three-element, single-operator algebra. A Mal’cev term [21]
is a ternary function m(x, y, z) satisfying

m(x, x, y) ⇡ m(y, x, x) ⇡ y.

The algebras presented here only have one operator ⇤, which
is therefore the only instruction in our instruction set. Since
we are evolving ternary terms, we use the three terminals x, y,
and z.

To test the differences between lexicase selection and
tournament selection on this problem, we used the tree GP

3http://hampshire.edu/lspector/push.html

TABLE I
PARAMETERS FOR EXPERIMENTS. THE FA COLUMN IS FOR THE FINITE

ALGEBRAS PROBLEM, AND THE DM-3 COLUMN IS FOR THE 3-BIT DIGITAL
MULTIPLIER PROBLEM. IN THE SYSTEM ROW, PUSH IS THE PUSHGP

SYSTEM, AND TREE IS THE TREE-BASED GENETIC PROGRAMMING
SYSTEM DESCRIBED IN SECTION IV-A.

Problem FA DM-3 Factorial

System Tree Push Push
Runs Per Condition 100 100 100
Population Size 1000 5000 1000
Max Generations 1000 4000 500
Max Program Size 1000 1000 500
Max Initial Program Size - 400 100
Expected Initial Program Size 50 - -
Max Initial Program Depth 20 - -
Expected Mutation Code Size 10 - -
Max Mutation Code Depth 10 - -
Max Instructions Executed - 1000 1000
Crossover Probability 50% 0% 0%
Mutation Probability 50% 0% 0%
ULTRA Probability 0% 100% 100%

TABLE II
ULTRA PARAMETERS USED IN OUR EXPERIMENTS.

Problem Digital Multiplier Factorial

ULTRA Mutation Rate 0.01 0.05
ULTRA Alternation Rate 0.01 0.05
ULTRA Alignment Deviation 10 10

TABLE III
FINITE ALGEBRAS IN THIS PAPER.

A1 ⇤ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ⇤ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

system described in Section IV-A to search for Mal’cev terms
for the finite algebras A1 and A2 given in Table III. We
explore the parameter space for tournament selection by using
tournaments with tournament sizes between 2 and 9. We have
also conducted runs searching for the other terms presented in
[20] in addition to those reported here with similar outcomes
on smaller sample sizes. We report the results using the
Mal’cev term since the other terms require significantly more
fitness evaluations.

Table IV presents the results of our runs on the finite
algebras problem using algebra A1. The runs with lexicase
selection outperformed any set of runs using tournament
selection on every performance measure. Tournaments of size
3 produced the most successes and best MBF out of the
tournament selection runs, but neither of these are close to
the results using lexicase selection.

B. Digital Multiplier

The digital multiplier problem requires the system to create
a program representing a digital circuit that multiplies two

Finite Algebras

A1 Mal’cev Term

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 6

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 2 35 532,000 0.75
Tournament Size 3 43 420,000 0.70
Tournament Size 4 31 440,000 0.75
Tournament Size 5 22 616,000 0.77
Tournament Size 6 25 750,000 0.90
Tournament Size 7 23 403,000 0.92
Tournament Size 8 26 464,000 0.94
Tournament Size 9 21 550,000 1.06
Lexicase 94 90,000 0.05

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 3 7 3,780,000 1.50
Tournament Size 4 5 3,648,000 1.50
Tournament Size 5 8 2,052,000 1.51
Tournament Size 6 9 1,921,000 1.45
Tournament Size 7 3 4,131,000 1.59
Tournament Size 8 9 990,000 1.64
Tournament Size 9 10 1,356,000 1.60
Lexicase 75 208,000 0.25

binary numbers. An n-bit digital multiplier circuit takes two
n-bit numbers represented in binary as input and multiplies
them together to create a 2n-bit number as output. This
problem was recommended by the authors of recent articles
on genetic programming benchmarks as an alternative to other
boolean problems such as multiplexer and parity, since it offers
difficulties not seen in those problems [22], [6]. In particular,
it forces the evolving programs to output multiple values
and allows for trials of problems of varying sizes without
constraining fitness values to powers of two. Previous work
has shown PushGP’s ability to evolve 2-bit digital multipliers
[13]. Here, we use PushGP to evolve solutions to the more
difficult 3-bit and 4-bit digital multiplier problems.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits to
produce 22n test cases, each with 2n output bits. The fitness
(error) of each test case is the number of bits that the program
gets wrong compared to the desired output bits. Thus the error
for a test case can be an integer between 0 and 2n. In our
implementation of the digital multiplier problem in PushGP,
we provide one input instruction for each input bit, and one
output instruction for each output bit. Each time an output
instruction is called, the output for that bit is overwritten by
the top item on the boolean stack so that only the last such
instruction executed affects the behavior of the program. If a

TABLE VI
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invert first then and, dup,
swap, rot

Input / Output in0, ..., in2n, out0, ..., out2n

TABLE VII
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM, WITH 100 RUNS

IN EACH CONDITION. MBF IS THE MEAN BEST FITNESS OF THE RUN.
NOTE THAT THE REPORTED FITNESSES ARE THE MEAN ERRORS OVER

TEST CASES, NOT THE SUMMED ERRORS.

Selection Successes MBF

Tournament Size 7 0 0.24
Lexicase 100 0

specific output instruction is never called within the program,
that bit is considered wrong in each test case, but no further
penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table VI.
The first four of these are the instructions recommended by
Walker and Miller [23], and the other three are typical stack
manipulation instructions that are often used in Push. The
boolean dup instruction duplicates the top item on the boolean
stack, the boolean swap instruction swaps the top two items
on the boolean stack, and boolean rot moves the third item
on the boolean stack to the top of the stack. Our random code
generator chooses to either use a boolean stack instruction or
an input/output instruction randomly, and then selects from
the chosen category uniformly. This ensures that the ratio of
boolean stack instructions to input/output instructions remains
50% for different sizes of the problem, even though there are
more input and output instructions in larger versions of the
problem.

Table VII presents our results on the 3-bit digital multiplier
problem. On this problem, PushGP with lexicase selection
finds perfect solutions in every run, whereas tournament
selection never found a perfect solution.

C. Factorial Symbolic Regression

The factorial symbolic regression problem is an integer
symbolic regression problem with one input and one output,
where the output should be the factorial of the input. Our
version uses 10 input test cases, ranging from 1 to 10 (with
outputs ranging from 1! = 1 to 10! = 3628800). The factorial
problem is not “modal” in the sense we describe above; an
evolved solution should essentially do the same thing for
every input. With a reduced tournament approach to parent
selection, some test cases will have a much larger impact on
an individual’s fitness than others, since the larger test cases
will likely have much larger error magnitude than the smaller
test cases. Since lexicase selection gives each test case equal
consideration regardless of the magnitude of the errors, we
expect it to perform better than tournament selection for this
problem.

Digital Multiplier

• Evolve a digital circuit to multiply two binary
numbers

• n-bit digital multiplier: 2 x n bits → 2n bits

• Multiple outputs

• Scalable

• Recommended as a GP benchmark problem
(McDermott, et al 2012, White et al 2013)

3-bit Digital Multiplier

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 6

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 2 35 532,000 0.75
Tournament Size 3 43 420,000 0.70
Tournament Size 4 31 440,000 0.75
Tournament Size 5 22 616,000 0.77
Tournament Size 6 25 750,000 0.90
Tournament Size 7 23 403,000 0.92
Tournament Size 8 26 464,000 0.94
Tournament Size 9 21 550,000 1.06
Lexicase 94 90,000 0.05

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 3 7 3,780,000 1.50
Tournament Size 4 5 3,648,000 1.50
Tournament Size 5 8 2,052,000 1.51
Tournament Size 6 9 1,921,000 1.45
Tournament Size 7 3 4,131,000 1.59
Tournament Size 8 9 990,000 1.64
Tournament Size 9 10 1,356,000 1.60
Lexicase 75 208,000 0.25

binary numbers. An n-bit digital multiplier circuit takes two
n-bit numbers represented in binary as input and multiplies
them together to create a 2n-bit number as output. This
problem was recommended by the authors of recent articles
on genetic programming benchmarks as an alternative to other
boolean problems such as multiplexer and parity, since it offers
difficulties not seen in those problems [22], [6]. In particular,
it forces the evolving programs to output multiple values
and allows for trials of problems of varying sizes without
constraining fitness values to powers of two. Previous work
has shown PushGP’s ability to evolve 2-bit digital multipliers
[13]. Here, we use PushGP to evolve solutions to the more
difficult 3-bit and 4-bit digital multiplier problems.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits to
produce 22n test cases, each with 2n output bits. The fitness
(error) of each test case is the number of bits that the program
gets wrong compared to the desired output bits. Thus the error
for a test case can be an integer between 0 and 2n. In our
implementation of the digital multiplier problem in PushGP,
we provide one input instruction for each input bit, and one
output instruction for each output bit. Each time an output
instruction is called, the output for that bit is overwritten by
the top item on the boolean stack so that only the last such
instruction executed affects the behavior of the program. If a

TABLE VI
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invert first then and, dup,
swap, rot

Input / Output in0, ..., in2n, out0, ..., out2n

TABLE VII
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM, WITH 100 RUNS

IN EACH CONDITION. MBF IS THE MEAN BEST FITNESS OF THE RUN.
NOTE THAT THE REPORTED FITNESSES ARE THE MEAN ERRORS OVER

TEST CASES, NOT THE SUMMED ERRORS.

Selection Successes MBF

Tournament Size 7 0 0.24
Lexicase 100 0

specific output instruction is never called within the program,
that bit is considered wrong in each test case, but no further
penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table VI.
The first four of these are the instructions recommended by
Walker and Miller [23], and the other three are typical stack
manipulation instructions that are often used in Push. The
boolean dup instruction duplicates the top item on the boolean
stack, the boolean swap instruction swaps the top two items
on the boolean stack, and boolean rot moves the third item
on the boolean stack to the top of the stack. Our random code
generator chooses to either use a boolean stack instruction or
an input/output instruction randomly, and then selects from
the chosen category uniformly. This ensures that the ratio of
boolean stack instructions to input/output instructions remains
50% for different sizes of the problem, even though there are
more input and output instructions in larger versions of the
problem.

Table VII presents our results on the 3-bit digital multiplier
problem. On this problem, PushGP with lexicase selection
finds perfect solutions in every run, whereas tournament
selection never found a perfect solution.

C. Factorial Symbolic Regression

The factorial symbolic regression problem is an integer
symbolic regression problem with one input and one output,
where the output should be the factorial of the input. Our
version uses 10 input test cases, ranging from 1 to 10 (with
outputs ranging from 1! = 1 to 10! = 3628800). The factorial
problem is not “modal” in the sense we describe above; an
evolved solution should essentially do the same thing for
every input. With a reduced tournament approach to parent
selection, some test cases will have a much larger impact on
an individual’s fitness than others, since the larger test cases
will likely have much larger error magnitude than the smaller
test cases. Since lexicase selection gives each test case equal
consideration regardless of the magnitude of the errors, we
expect it to perform better than tournament selection for this
problem.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 6

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 2 35 532,000 0.75
Tournament Size 3 43 420,000 0.70
Tournament Size 4 31 440,000 0.75
Tournament Size 5 22 616,000 0.77
Tournament Size 6 25 750,000 0.90
Tournament Size 7 23 403,000 0.92
Tournament Size 8 26 464,000 0.94
Tournament Size 9 21 550,000 1.06
Lexicase 94 90,000 0.05

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 3 7 3,780,000 1.50
Tournament Size 4 5 3,648,000 1.50
Tournament Size 5 8 2,052,000 1.51
Tournament Size 6 9 1,921,000 1.45
Tournament Size 7 3 4,131,000 1.59
Tournament Size 8 9 990,000 1.64
Tournament Size 9 10 1,356,000 1.60
Lexicase 75 208,000 0.25

binary numbers. An n-bit digital multiplier circuit takes two
n-bit numbers represented in binary as input and multiplies
them together to create a 2n-bit number as output. This
problem was recommended by the authors of recent articles
on genetic programming benchmarks as an alternative to other
boolean problems such as multiplexer and parity, since it offers
difficulties not seen in those problems [22], [6]. In particular,
it forces the evolving programs to output multiple values
and allows for trials of problems of varying sizes without
constraining fitness values to powers of two. Previous work
has shown PushGP’s ability to evolve 2-bit digital multipliers
[13]. Here, we use PushGP to evolve solutions to the more
difficult 3-bit and 4-bit digital multiplier problems.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits to
produce 22n test cases, each with 2n output bits. The fitness
(error) of each test case is the number of bits that the program
gets wrong compared to the desired output bits. Thus the error
for a test case can be an integer between 0 and 2n. In our
implementation of the digital multiplier problem in PushGP,
we provide one input instruction for each input bit, and one
output instruction for each output bit. Each time an output
instruction is called, the output for that bit is overwritten by
the top item on the boolean stack so that only the last such
instruction executed affects the behavior of the program. If a

TABLE VI
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invert first then and, dup,
swap, rot

Input / Output in0, ..., in2n, out0, ..., out2n

TABLE VII
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM, WITH 100 RUNS

IN EACH CONDITION. MBF IS THE MEAN BEST FITNESS OF THE RUN.
NOTE THAT THE REPORTED FITNESSES ARE THE MEAN ERRORS OVER

TEST CASES, NOT THE SUMMED ERRORS.

Selection Successes MBF

Tournament Size 7 0 0.24
Lexicase 100 0

specific output instruction is never called within the program,
that bit is considered wrong in each test case, but no further
penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table VI.
The first four of these are the instructions recommended by
Walker and Miller [23], and the other three are typical stack
manipulation instructions that are often used in Push. The
boolean dup instruction duplicates the top item on the boolean
stack, the boolean swap instruction swaps the top two items
on the boolean stack, and boolean rot moves the third item
on the boolean stack to the top of the stack. Our random code
generator chooses to either use a boolean stack instruction or
an input/output instruction randomly, and then selects from
the chosen category uniformly. This ensures that the ratio of
boolean stack instructions to input/output instructions remains
50% for different sizes of the problem, even though there are
more input and output instructions in larger versions of the
problem.

Table VII presents our results on the 3-bit digital multiplier
problem. On this problem, PushGP with lexicase selection
finds perfect solutions in every run, whereas tournament
selection never found a perfect solution.

C. Factorial Symbolic Regression

The factorial symbolic regression problem is an integer
symbolic regression problem with one input and one output,
where the output should be the factorial of the input. Our
version uses 10 input test cases, ranging from 1 to 10 (with
outputs ranging from 1! = 1 to 10! = 3628800). The factorial
problem is not “modal” in the sense we describe above; an
evolved solution should essentially do the same thing for
every input. With a reduced tournament approach to parent
selection, some test cases will have a much larger impact on
an individual’s fitness than others, since the larger test cases
will likely have much larger error magnitude than the smaller
test cases. Since lexicase selection gives each test case equal
consideration regardless of the magnitude of the errors, we
expect it to perform better than tournament selection for this
problem.

Factorial

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 6

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 2 35 532,000 0.75
Tournament Size 3 43 420,000 0.70
Tournament Size 4 31 440,000 0.75
Tournament Size 5 22 616,000 0.77
Tournament Size 6 25 750,000 0.90
Tournament Size 7 23 403,000 0.92
Tournament Size 8 26 464,000 0.94
Tournament Size 9 21 550,000 1.06
Lexicase 94 90,000 0.05

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2 ,

WITH 100 RUNS IN EACH CONDITION. CE IS COMPUTATIONAL EFFORT
AND MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT THE

REPORTED FITNESSES ARE THE SUMMED ERRORS OVER TEST CASES, NOT
THE MEAN OF THOSE ERRORS.

Selection Successes CE MBF

Tournament Size 3 7 3,780,000 1.50
Tournament Size 4 5 3,648,000 1.50
Tournament Size 5 8 2,052,000 1.51
Tournament Size 6 9 1,921,000 1.45
Tournament Size 7 3 4,131,000 1.59
Tournament Size 8 9 990,000 1.64
Tournament Size 9 10 1,356,000 1.60
Lexicase 75 208,000 0.25

binary numbers. An n-bit digital multiplier circuit takes two
n-bit numbers represented in binary as input and multiplies
them together to create a 2n-bit number as output. This
problem was recommended by the authors of recent articles
on genetic programming benchmarks as an alternative to other
boolean problems such as multiplexer and parity, since it offers
difficulties not seen in those problems [22], [6]. In particular,
it forces the evolving programs to output multiple values
and allows for trials of problems of varying sizes without
constraining fitness values to powers of two. Previous work
has shown PushGP’s ability to evolve 2-bit digital multipliers
[13]. Here, we use PushGP to evolve solutions to the more
difficult 3-bit and 4-bit digital multiplier problems.

The boolean n-bit digital multiplier problem uses each
possible assignment of 0 and 1 to each of the 2n input bits to
produce 22n test cases, each with 2n output bits. The fitness
(error) of each test case is the number of bits that the program
gets wrong compared to the desired output bits. Thus the error
for a test case can be an integer between 0 and 2n. In our
implementation of the digital multiplier problem in PushGP,
we provide one input instruction for each input bit, and one
output instruction for each output bit. Each time an output
instruction is called, the output for that bit is overwritten by
the top item on the boolean stack so that only the last such
instruction executed affects the behavior of the program. If a

TABLE VI
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invert first then and, dup,
swap, rot

Input / Output in0, ..., in2n, out0, ..., out2n

TABLE VII
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER
EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, dup, eq, frominteger, not, or, pop, rot,
swap

Integer Stack add, div, dup, eq, fromBoolean,
greaterThan, lessThan, mod, mult, pop, rot,
sub, swap

Exec Stack dup, eq, if , noop, pop, rot, swap, when, k,
s, y

Input in
Constants 0, 1

TABLE VIII
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM, WITH 100 RUNS

IN EACH CONDITION. MBF IS THE MEAN BEST FITNESS OF THE RUN.
NOTE THAT THE REPORTED FITNESSES ARE THE MEAN ERRORS OVER

TEST CASES, NOT THE SUMMED ERRORS.

Selection Successes MBF

Tournament Size 7 0 0.24
Lexicase 100 0

specific output instruction is never called within the program,
that bit is considered wrong in each test case, but no further
penalty is given.

Beyond the input and output instructions, we use the
boolean stack instructions found in the top row of Table VI.
The first four of these are the instructions recommended by
Walker and Miller [23], and the other three are typical stack
manipulation instructions that are often used in Push. The
boolean dup instruction duplicates the top item on the boolean
stack, the boolean swap instruction swaps the top two items
on the boolean stack, and boolean rot moves the third item
on the boolean stack to the top of the stack. Our random code
generator chooses to either use a boolean stack instruction or
an input/output instruction randomly, and then selects from
the chosen category uniformly. This ensures that the ratio of
boolean stack instructions to input/output instructions remains
50% for different sizes of the problem, even though there are
more input and output instructions in larger versions of the
problem.

Table VII presents our results on the 3-bit digital multiplier
problem. On this problem, PushGP with lexicase selection
finds perfect solutions in every run, whereas tournament
selection never found a perfect solution.

C. Factorial Symbolic Regression

The factorial symbolic regression problem is an integer
symbolic regression problem with one input and one output,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2013 7

TABLE IX
RESULTS ON THE FACTORIAL PROBLEM, WITH 100 RUNS IN EACH

CONDITION. MBF IS THE MEAN BEST FITNESS OF THE RUN. NOTE THAT
THE REPORTED FITNESSES ARE THE MEAN ERRORS OVER TEST CASES,

NOT THE SUMMED ERRORS.

Selection Successes MBF

Tournament Size 7 0 74,545
Lexicase 61 28,980

where the output should be the factorial of the input. Our
version uses 10 input test cases, ranging from 1 to 10 (with
outputs ranging from 1! = 1 to 10! = 3628800). The factorial
problem is not “modal” in the sense we describe above; an
evolved solution should essentially do the same thing for
every input. With a reduced tournament approach to parent
selection, some test cases will have a much larger impact on
an individual’s fitness than others, since the larger test cases
will likely have much larger error magnitude than the smaller
test cases. Since lexicase selection gives each test case equal
consideration regardless of the magnitude of the errors, we
expect it to perform better than tournament selection for this
problem.

We used PushGP to find solutions to the factorial problem.
For this problem problem we used an function set that allowed
for the manipulation of integers, boolean values, and the exe-
cution stack (to permit conditional branches and recursion), but
we did not include Push’s high-level iteration instructions that
allow for trivial solutions. Specifically we used the constants
0 and 1; an input instruction in; the boolean instructions
and, dup, eq, frominteger, not, or, pop, rot, and swap;
the integer instructions add, div, dup, eq, fromBoolean,
greaterThan (which pushes a boolean), lessThan, mod,
mult, pop, rot, sub, and swap; and the exec instructions
dup, eq, if , noop, pop, rot, swap, when, and the combinators
k, s, and y (see [18]).

Table VIII presents the results of our runs on the factorial
problem. When using lexicase selection, PushGP found 61
successful programs whereas runs with tournament selection
of size 7 did not find any. Lexicase selection also achieved
better MBF, with the difference compared to tournament
selection’s MBF statistically significant based on an unpaired
t-test at p = 0.01.

VI. CONCLUSION

The results presented above clearly demonstrate, using two
different genetic programming systems and three different
problems, that lexicase selection can perform well on at
least some uncompromising problems—that is, on problems
characterized by the requirement that solutions must perform
optimally on each of many test cases, without compromising
performance on any one test case for improved performance
on any others. As we have argued above, this is a broad class
of problems that includes many problems to which genetic
programming has traditionally been applied.

In tests of a relatively standard tree-based genetic program-
ming system on problems involving finite algebras we saw
that sets of runs using lexicase selection produced at least

twice as many solutions, and sometimes over 10 times as
many solutions, as did sets of runs using tournament selection
with tournament sizes ranging from 2 to 9. The computational
effort in the lexicase selection runs was always less than 1

4 of
that for tournament selection, and in some cases less than 1

10 .
The improvement in mean best fitness provided by lexicase
selection was equally dramatic.

In tests of the PushGP genetic programming system on
a 3-bit digital multiplier problem and a factorial regression
problem we also observed significant advantages from the
use of lexicase selection. In these PushGP experiments we
compared lexicase selection only to tournament selection with
a tournament size of 7 (which is a common value for this
parameter in the genetic programming literature), but the re-
sults were stark: no solutions at all when tournament selection
was used but large numbers of solutions (100100 for the 3-bit
digital multiplier problem and 61

100 for the factorial regression
problem) when lexicase selection was used.

The work presented here applies lexicase selection only
to genetic programming, but there is no obvious reason that
it couldn’t be useful in other population-based evolutionary
computation systems as well. It is applicable in any context in
which parents are selected based on performance, and in which
performance is assessed relative to more than one “case.” Our
hypothesis is that it will be most useful in uncompromising
problems, but determining its full range of applicability is a
topic for future research.

Of course, we do not expect lexicase selection to provide
a “free lunch” [24] over all problems (or even over all un-
compromising problems), or over all evolutionary computation
systems. It would not surprise us if it was possible to specify
a problem and an evolutionary computation system for which
solutions could only be reached via parents that are mediocre
across all test cases. But considering the dramatic benefits
observed for lexicase selection on the problems and systems
examined here, we are optimistic about the prospects for
lexicase selection when used on other problems and with other
systems as well.

One potential drawback of the form of lexicase selection
used here is that it may be expected to perform poorly in
contexts in which the “elite sets” for all or most cases include
only a single individual. In these contexts lexicase selection
will select parents on the basis of single test cases and it will
not allow for the selection of parents that perform well on
combinations of cases. We have seen this problem arise when
applying lexicase selection to problems that give continuous
errors, such as floating-point symbolic regression problems.
In preliminary tests on problems of this nature we have seen
lexicase selection perform poorly in comparison to tournament
selection. One option for addressing this issue is to consider
non-elitist forms of lexicase selection, in which we modify
the specification for which candidates are eliminated at each
step of the lexicase selection algorithm. For example, we could
eliminate the worst 1

n of the remaining candidates at each step
until one individual remains, where n is likely a small number
such as 2 or 3. Another option would be to retain all candidates
with performance that is within some predefined epsilon of the
elite value for the case under consideration for each case.

With Push, the tagged-entry-point architecture,
ULTRA, and lexicase selection... we succeed!*

*On some reasonably large sets of tests (not all
shown above, yet).

*But without generalizing.

And?

Continuing Work
• Generative tests for selection and validation

• Refinements to tagging mechanisms, ULTRA,
and lexicase selection

• Work on other program synthesis problems:

• Kata bowling

• The UNIX wc program

• CS101 problems

• Insights from non-evolutionary program
synthesis work

Conclusions

• Evolutionary synthesis of arbitrary software
is hard!

• But we can learn a lot from trying to do it,
both for software synthesis and for other
GP applications (including others in software
engineering, I suspect)

• Push, tags, tagged-entry points, uniform
variation methods, and lexicase selection
have all demonstrated promise

Thanks

• Thomas Helmuth, Emma Tosch, Kyle
Harrington, Kwaku Yeboah Antwi, Jamie
Matheson, Daniel Homer, Omri Bernstein,
Jake Wisdom, Josiah Erikson

• USA National Science Foundation grants
Grants No. 1017817 and 1129139.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

