The calculator problem and
the evolutionary synthesis
of arbitrary software

CREST Open Workshop on Genetic Programming
for Software Engineering

October 14,2013

Lee Spector
Hampshire College
Amherst, MA USA

Software

SPL-110

Qutline

Arbitrary software
Requirements and ways to meet them
Tags, uniform variation, and lexicase selection

The calculator problem

Other problems and prospects

Arbitrary Software

OS utilities

Word processors

Web browsers
Accounting systems
Image processing systems

Everything

Arbitrary Software

May be stateful, with multiple entry points

May have a variety of interfaces involving a
variety of types

May require arbitrary Turing-computable
functions

Can be specified with behavioral tests

Requirements

® Represent and evolve arbitrary computable
functions on arbitrary types (Push, uniform
variation)

® Represent and evolve arbitrary computational
architectures (modules; tags, tagged entry points)

® Drive evolution with performance tests (lexicase
selection)

Evolutionary Computation

Random Generation

V

Assessment —~ Solution

/N

Selection ~ Variation

Genetic Programming

Evolutionary computing to produce
executable computer programs

Programs are assessed by executing them
Automatic programming; producing software

Potential (?): evolve software at all scales,
including and surpassing the most ambitious
and successful products of human software
engineering

Program Representations

Lisp-style symbolic expressions (Koza, ...).

Purely functional/lambda expressions (Walsh, Yy, ...).

Linear sequences of machine/byte code (Nordin et al,, ...).
Artificial assembly-like languages (Ray,Adami, ...).
Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
Graph-structured programs (Teller, Globus, ...).

Obiject hierarchies (Bruce,Abbott, Schmutter, Lucas, ...)
Fuzzy rule systems (Tunstel, Jamshidi, ...)

Logic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Evolvability

The fact that a computation can be expressed
in a formalism does not imply that a correct
program can be produced in that formalism by

a human programmer or by an evolutionary
process.

Data/Control Structure

® Data abstraction and organization

Data types, variables, name spaces, data
structures, ...

® Control abstraction and organization

Conditionals, loops, modules, threads, ...

Structure via GP (1)

Specialize GP techniques to support human

programming

Strongly typed

anguage abstractions

genetic programming

Automatically defined functions/macros

Architecture altering operations

Map from unstructured genomes to
programs in languages that support
abstraction (e.g. via grammars)

Structure via GP (2)

Forget about human programming

abstractions (mostly)

® Evolve programs

in 2 minimal-syntax

language that nonetheless supports a full

range of data anc

control abstractions

® For example: orc

nestrate data flows via

stacks, not via syntax

® Push

Push

® A programming language developed specifically for
evolutionary computation, as the language in which
evolving programs are expressed

® [ntended to maximize the evolvability of arbitrary
computational processes

Push

Stack-based postfix language with one stack per type

Types include: integer, float, boolean, code, exec,
vector, matrix, quantum gate, [add more as needed]

Missing argument! NO-OP

Minimal syntax:
program — instruction | literal | (program™)

Why Push!?

Highly expressive: data types, data structures,
variables, conditionals, loops, recursion,
modules, ...

Elegant: minimal syntax and a simple, stack-based
execution architecture

Elegance simplifies a variety of things ranging
from uniform variation to meta-evolution

Evolvable

Extensible

Sample Push Instructions

Stack manipulation POP, SWAP, YANK,

instructions DUP, STACKDEPTH,

(all types) SHOVE, FLUSH, =

Ma’th _|_7) /7 x, >7 <7

(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,

(CODE) INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT

Control manipulation | DO*, DO*COUNT, DO*RANGE,

(CODE and EXEC) DO*TIMES, IF

Push(3) Semantics

e '[o execute program P:

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E':

(a) If F is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

(2 3 INTEGER.* 4.1 5.2 FLOAT.+
TRUE FALSE BOOLEAN.OR)

(23 INTEGER* 4.1 5.2 (23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE FLOAT.+ TRUE FALSE
BOOLEAN.OR) BOOLEAN.OR)

exec code bool int float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

INTEGER.*
4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

4.1
52
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

float

5.2
FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

4.1

float

FLOAT.+
TRUE

FALSE

BOOLEAN.OR

exec

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR)

code

bool

int

52

4.1

float

TRUE

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 6 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

FALSE

(23 INTEGER * 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

(23 INTEGER * 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR)

exec code bool int float

No Time to Show How

® Push enables a trivial form of auto-simplification

® Push programs are often robust to reordering
and other changes, producing a search space
with high neutrality

® Push programs that modify their own code and/
or the execution stack dynamically can thereby
implement arbitrary control structures and
several forms of modularity

SPL-110

Calculator Test Cases

Keys pressed => number, error flag
Digit entry tests

Digit entry pair tests

Double digit float entry tests

Single digit math tests

Single digit incomplete math tests

Single digit chained math tests

Division by zero tests

Digit Entry lests

:zero => 0.0, false

:one => | .0, false

two => 2.0, false

:three => 3.0, false

Digit Entry Pair Tests

:zero :zero => 0.0, false
:zero :one => | .0, false
:two :three => 23.0, false

‘nine :nine => 99.0, false

o

oat Entry Tests

:zero :point :nine => 0.9, false

:zero :point :two => 0.2 false

.seven .

:three :

hoint :nine => 7.9, false

hoint :two => 3.2 false

Single Digit Math Tests

® 't

® 't

:zero :plus :nine :equals => 9.0, false

nree :times :four :equals => 2.0, fa

nree :minus :nine :equals => -6.0, fa

S€E

SE

:three :divided-by :four :equals => 0.75, false

Incomplete Math lests

® :three :plus :four => 4.0, false

® :seven :plus => 7.0, false

Chained Math Tests

:three :plus :nine :minus :five :equals
=> 7.0, false

:three :times :two :divided-by :eight :equals
=> 0.75, false

:three :divided-by :nine :minus :five :equals
=> -4.6666665, false

Division by Zero lests

® :zero :divided-by :zero :equals => 0.0, true

® :seven :divided-by :zero :equals => 0.0, true

® :three :divided-by :zero :equals => 0.0, true

Architectural Requirements

® Every key press is an entry point

® Answers (a floating point number and a
boolean value) should provided after every
key press

® State must be maintained between key
presses

® Stacks + tags provide an elegant way to
meet these requirements

Holland’s Tags

Initially arbitrary identifiers that come to
have meaning over time

Matches may be inexact

Appear to be present in some form in many
different kinds of complex adaptive systems

Examples range from immune systems to
armies on a battlefield

A general tool for the support of emergent
complexity

Inc

Inc

Tag-based Modules

Uud

Uud

e instructions t

e instructions t

nat tag code (modules)

nat recall and execute

modules by closest matching tag

If a single module has been tagged then all tag
references will recall modules

The number of tagged modules can grow
incrementally over evolutionary time

Expressive and evolvable

Calculator Architecture

® Run program once to tag modules

® (Clear stacks

® For each pressed key, execute the module
that best matches the corresponding tag,

maintaining stac

ks across key presses

® The top of the f

oat stack is the number

output; the top of the boolean stack is the
error flag output

And!?

With Push and the tagged-entry-point architecture
we can run GP on the calculator problem.

And it fails miserably:
e lLarge programs are required
 Must allow growth without bloating

* Must allow arbitrary recombination

Uniform Variation

® All genetic material that a child inherits
should be = likely to be mutated

® Parts of both parents should be = likely to

appear in children (at least if they are = in
size), and to appear in a range of
combinations

Why Uniformity?

® No hiding from mutation

® All parts of parents subject to variation and
recombination

® Biological genetic variation, while not fully
uniform, has uniformity properties that
prevent some of the problems we see in
GP; e.g. just having more genes doesn’t
generally “protect” any of them

Prior VWork

® Point mutations or “uniform crossovers’ that
replace/swap nodes but only in restricted ways;
cannot change structure, has depth biases
(McKay et al, 1995; Page et al, 1998; Poli and
Langdon, 1998; Poli and Page, 2000; Semenkin and
Semenkina, 2012)

e Uniform mutation via size-based numbers of tree
replacements; depth biases, little demonstrated
benefit (McKay et al, 1995;Van Belle and Ackley,
2002)

ULTRA

® Achieve uniformity by treating genomes as linear
sequences, even if they are hierarchically structured

® Repair after transform to ensure structural validity

The ULTRA Operator

® Uniform Linear Transformation with
Repair and Alternation

® linearize 2 parents, treating “(” and)" as
ordinary tokens

® Start at the beginning of one parent and
copy tokens to the child, switching parents
stochastically (according to the alternation
rate, and subject to an alignment deviation)

® Post-process with uniform mutation
(according to a mutation rate) and repair

Parents:
(ab(c (d))e (fg))
(1 (2 (34)5)6)

Result of alternation:

(ab2 (34d)) 6)

Result of repair:

(a (b2 (34d))6)

Train RMSE

70

bioavailability problem

60 -

(&)
o
1

40 -

30

I I
81/9/10 45/45/10

I
ULTRA

ULTRA on the

70
°
H
]
[]
° []
60 - .
L]
L]
L L]
) 50
=
o
3
|_
40 -
30—
I I I
81/9/10 45/45/10 ULTRA

500

400 -

1ze

300 -

Mean Program S
g
1

100 -

-@- 81/9/10
- 45/45/10
- ULTRA

25

1
50
Generation

75

100

And!?

With Push, the tagged-entry-point architecture, and
ULTRA... we still fail. But not quite as miserably.

Issues:

e Different test cases require qualitatively different
modes of response

* Numbers of cases of different types have an undue
influence

* Average performance across cases does not guide
search appropriately

Lexicase Selection

Each parent is selected by filtering the entire
population, one one case at a time (in random
order), keeping only the elite at each stage

Useful for “modal” problems, which require
qualitatively different responses to different inputs

Useful for “uncompromising” problems, in which

SO

Al

utions must be optimal on each case

comparisons are “within case,” so may be

useful whenever cases are non-comparable

Lexicase Selection

Initialize:

Candidates = the entire population

Cases = a list of all of the test cases in random order
Loop:

Candidates = the subset of Candidates with exactly the best
performance of any current candidate for the first case in Cases

If Candidates or Cases contains just a single element then
return a randomly selected individual from Candidates

Otherwise remove the first case from Cases and go to Loop

Finite Algebras

Al Mal'cev Term

Selection Successes CE MBF
Tournament Size 2 35 532,000 0.75
Tournament Size 3 43 420,000 0.70
Tournament Size 4 31 440,000 0.75
Tournament Size 5 22 616,000 0.77
Tournament Size 6 25 750,000 0.90
Tournament Size 7 23 403,000 0.92
Tournament Size 8 26 464,000 0.94
Tournament Size 9 21 550,000 1.06
Lexicase 94 90,000 0.05

Digital Multiplier

Evolve a digital circuit to multiply two binary
numbers

n-bit digital multiplier: 2 x n bits = 2n bits
Multiple outputs
Scalable

Recommended as a GP benchmark problem
(McDermott, et al 2012, White et al 201 3)

3-bit Digital Multiplier

Boolean Stack and, or, xor, invert_first_then_and, dup,
swap, rot

Input / Output 1in0, ..., in2n, outO, ..., out2n

Selection Successes MBF

Tournament Size 7 0 0.24
Lexicase 100 0

Factorial

Boolean Stack and, dup, eq, frominteger, not, or, pop, rot,
swap

Integer Stack add, div, dup, eq, fromBoolean,
greaterThan, lessThan, mod, mult, pop, rot,

sub, swap
Exec Stack dup, eq, if , noop, pop, rot, swap, when, k,
S, ¥
Input in
Constants 0,1
Selection Successes MBF
Tournament Size 7 0 74,545

Lexicase 61 28,980

And!?

With Push, the tagged-entry-point architecture,
ULTRA, and lexicase selection... we succeed!*

*On some reasonably large sets of tests (not all
shown above, yet).

*But without generalizing.

Continuing Work

® (Generative tests for selection and validation

® Refinements to tagging mechanisms, ULTRA,
and lexicase selection

® Work on other program synthesis problems:
e Kata bowling
® The UNIX wc program
e CSI0I problems

® |nsights from non-evolutionary program
synthesis work

Conclusions

® Evolutionary synthesis of arbitrary software
is hard!

® But we can learn a lot from trying to do it,
both for software synthesis and for other
GP applications (including others in software
engineering, | suspect)

® Push, tags, tagged-entry points, uniform
variation methods, and lexicase selection
have all demonstrated promise

Thanks

® Thomas Helmuth, Emma Tosch, Kyle
Harrington, Kwaku Yeboah Antwi, Jamie
Matheson, Daniel Homer, Omri Bernstein,

Jake Wisdom, Josiah Erikson

® USA National Science Foundation grants
Grants No. 1017817 and | 129139.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of

the National Science Foundation.

0 00 Cenetic Programming and Evolvable Machines - incl. option to publish open access

| 4| » ||+ || & www.springer.com

- GPEM-Springer
- GPEM-Springer

) Springer

HOME : MY SPRINGER : SUBJECTS : SERVICES : PUBLISHERS - ABOUTUS
» Artificial Intelligence rome - coroue scence > ansca iesgeece

SUBDISCIPLINES | JOURNALS : BOOKS - SERIES | TEXTBOOKS : REFERENCE WORKS

Genetic Programming and Evolvable Machines

GENETIC

PROGRAMMING Main editor: L. Spector

AND EVOLVABLE ISSN: 1389-2578 (print version) %
MACHINES ISSN: 1573-7632 (electronic version) Free

Preview

Journal no. 10710

[+:= [l RECOMMEND TO LIBRARIAN

o

Flike 19 W Tweet 3 g +1

ABOUT THIS JOURNAL @ EDITORIAL BOARD

C
H - - . - . . ?
OPEN ACCESS Interqsted in Publ;shmg you; article in this journal?

READ THIS JOURNAL ON SPRINGERLINK

Online First Articles
All volumes & issues i
Free: Sample Articles e

(0 orzipmiree SRS

Aims and Scope
Submit Online

Open Choice - Your Way to Open Access
Instructions for Authors

GPEM blog
(-~
SERVICES FOR THE JOURNAL

Contacts

