
gp with meaning and confidence

colin johnson / university of kent

Schtick

• That techniques from the more formal end of
computer science/software engineering have
a lot to contribute to genetic programming
and related areas.

Overview

• the use of formal measures of program
correctness in fitness functions

• the use of scaffolding assumptions to evolve
recursive programs

• the use of geometric methods to explore the
semantic space of programs

Overview

• the use of formal measures of program
correctness in fitness functions

• the use of scaffolding assumptions to evolve
recursive programs

• the use of geometric methods to explore the
semantic space of programs

Confidence

• Ways to be confident that a system works:
• having confidence in the way in which it is constructed

• testing it on a rich set of test data

• verifying formally that it satisfies some formal
constraints against a model of the desired behaviour

Formal Verification: Model Checking

• Create a formal specification of desired
behaviour, in some temporal logic.
• “Once a coin has been inserted into the machine, at some

state in the future coffee must be dispensed.”

• “Once a coffee has been dispensed, another coffee cannot
be dispensed until another coin has been inserted.”

• There are then ways of verifying that a particular
program satisfies these statements (model
checking; MC); essentially, a rigorous way of
counting sets of paths through the program,
quotiented out by each logical statement.

Using MC in GP

• Simple fitness function:
• fitness is defined as a count of how many statements in the

specification are satisfied

• Experiments:
• some success for simple examples

• in particular, by accumulating programs from simple ones

• but, reaches a complexity wall fairly quickly

• Moving forward:
• evaluating fitness from within the model checking algorithm,

by estimating how much of the space is covered

• using a hybrid with traditional fitness; perhaps
auto-construct test data from specifications.

The Big Picture
• How can we integrate formal models of

desired program behaviour with GP? More
generally, interactions between GP and
formal models of knowledge/behaviour?

• We assume that the specification is accurate;
but, this is a dodgy assumption.
• Perhaps, there is a way forward where we use GP to

generate programs that satisfy the specification with
the aim of seeing whether the specification is broken!

• specification-generation cycle

Overview

• the use of formal measures of program
correctness in fitness functions

• the use of scaffolding assumptions to evolve
recursive programs

• the use of geometric methods to explore the
semantic space of programs

Recursion (1)

• Consider the problem of evolving a program to
reverse a list of arbitrary length.

• Not a long program; here is a solution:

• ...so, an ideal candidate for GP, yes?

Recursion (2)

• No! Actually, rather hard...small errors get
amplified in the recursion.

• Instead, create a scaffolding function:
function correct-reverse(list){

 if (list==[1,2,3]) return([3,2,1]);

 if (list==[2,3,1]) return([1,3,2]);

 ...

}

•Now, we can evolve using correct-reverse
wherever reverse should be used.

• It is, by definition, correct on all of the
training set.

Recursion (3)

• It works!

• And it’s
efficient!

Reverse

Insert

The Big Picture

• Almost the opposite of before:
• Rather than taking something that is usually specified

by data and replacing it with a formal calcuation (MC
replacing testing) here we are taking something that is
usually done by calculation and replacing it by data!)

• The bigger picture here is about
“intermediate evaluation”—what can we say
about a program before it is completely
evaluated? How can we “fill in the gaps” for
something that isn’t yet executable?

Overview

• the use of formal measures of program
correctness in fitness functions

• the use of scaffolding assumptions to evolve
recursive programs

• the use of geometric methods to explore the
semantic space of programs

Semantics in Genetic Programming

• Focusing on exploring the space of program meanings
rather than the space of program text?

• The “semantics” of a program are, in this context, its
set of input-output behaviours across its input space
• either formalised in some way

• or via a sample of inputs (“sampling semantics”)

• Operators acting on the meaning of programs:
• semantic mutation: a small change to the input-output

behaviour of programs

• semantic crossover: taking two programs and finding a new
program that exhibits input-output behaviours “inbetween” the
two programs

Geometric Semantic Genetic
Programming: Lifting

T1, T2, T3: program text
O1,O2,O3: input-output mapping
O: genotype-phenotype mapping
GX: geometric crossover

Example: Geometric Crossover

• Essentially a “random mask”, selecting from
the two input trees.

• Similar structures exist for other domains
e.g. in curve fitting

...but hang on a minute...

• Let’s have a look at this
again...

• ...each time we apply it, we
double the size of the tree...

• ...so after many
generations, we have huge
trees.

• We have dealt with this via simplification...
• ...but, more recently Vanesschi et al. have noted

that this can be handled by pointer
manipulation; and applied these ideas to real-
world medical problems.

Some Results

Some Results

Some Results

Some Results

The Big Picture

• Working in the space of the meaning of
programs rather than program text

• (but, text is still needed)

• Representation matters more than search
algorithm.

• Is this bag-of-tricks useful elsewhere (e.g. in
machine learning)?

Thanks to

• Alberto Moraglio

• Krzysztof Krawiec

• Fernando Otero

• Alex Freitas

• Simon Thompson

• Lawrence Beadle

• He Pei

Questions/Comments

