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Schtick

• That techniques from the more formal end of 
computer science/software engineering have 
a lot to contribute to genetic programming 
and related areas.



Overview

• the use of formal measures of program 
correctness in fitness functions

• the use of scaffolding assumptions to evolve 
recursive programs

• the use of geometric methods to explore the 
semantic space of programs
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Confidence

• Ways to be confident that a system works:
• having confidence in the way in which it is constructed

• testing it on a rich set of test data

• verifying formally that it satisfies some formal 
constraints against a model of the desired behaviour



Formal Verification: Model Checking

• Create a formal specification of desired 
behaviour, in some temporal logic. 
• “Once a coin has been inserted into the machine, at some 

state in the future coffee must be dispensed.”

• “Once a coffee has been dispensed, another coffee cannot 
be dispensed until another coin has been inserted.”

• There are then ways of verifying that a particular 
program satisfies these statements (model 
checking; MC); essentially, a rigorous way of 
counting sets of paths through the program, 
quotiented out by each logical statement.



Using MC in GP

• Simple fitness function: 
• fitness is defined as a count of how many statements in the 

specification are satisfied

• Experiments:
• some success for simple examples

• in particular, by accumulating programs from simple ones

• but, reaches a complexity wall fairly quickly

• Moving forward:
• evaluating fitness from within the model checking algorithm, 

by estimating how much of the space is covered

• using a hybrid with traditional fitness; perhaps 
auto-construct test data from specifications.



The Big Picture
• How can we integrate formal models of 

desired program behaviour with GP? More 
generally, interactions between GP and  
formal models of knowledge/behaviour?

• We assume that the specification is accurate; 
but, this is a dodgy assumption.
• Perhaps, there is a way forward where we use GP to 

generate programs that satisfy the specification with 
the aim of seeing whether the specification is broken!

• specification-generation cycle
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Recursion (1)

• Consider the problem of evolving a program to 
reverse a list of arbitrary length.

• Not a long program; here is a solution:

• ...so, an ideal candidate for GP,  yes?



Recursion (2)

• No! Actually, rather hard...small errors get 
amplified in the recursion.

• Instead, create a scaffolding function:
function correct-reverse(list){

   if (list==[1,2,3]) return([3,2,1]);

   if (list==[2,3,1]) return([1,3,2]);

   ...

}

•Now, we can evolve using correct-reverse 
wherever reverse should be used.

• It is, by definition, correct on all of the 
training set.



Recursion (3)

• It works! 

• And it’s 
efficient!

Reverse

Insert



The Big Picture

• Almost the opposite of before:
• Rather than taking something that is usually specified 

by data and replacing it with a formal calcuation (MC 
replacing testing) here we are taking something that is 
usually done by calculation and replacing it by data!)

• The bigger picture here is about 
“intermediate evaluation”—what can we say 
about a program before it is completely 
evaluated? How can we “fill in the gaps” for 
something that isn’t yet executable?
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Semantics in Genetic Programming

• Focusing on exploring the space of program meanings 
rather than the space of program text?

• The “semantics” of a program are, in this context, its 
set of input-output behaviours across its input space
• either formalised in some way

• or via a sample of inputs (“sampling semantics”)

• Operators acting on the meaning of programs:
• semantic mutation: a small change to the input-output 

behaviour of programs

• semantic crossover: taking two programs and finding a new 
program that exhibits input-output behaviours “inbetween” the 
two programs



Geometric Semantic Genetic 
Programming: Lifting

T1, T2, T3: program text
O1,O2,O3: input-output mapping
O: genotype-phenotype mapping
GX: geometric crossover



Example: Geometric Crossover

• Essentially a “random mask”, selecting from 
the two input trees.

• Similar structures exist for other domains 
e.g. in curve fitting



...but hang on a minute...

• Let’s have a look at this 
again...

• ...each time we apply it, we 
double the size of the tree...

• ...so after many 
generations, we have huge 
trees.

•  We have dealt with this via simplification...
• ...but, more recently Vanesschi et al. have noted 

that this can be handled by pointer 
manipulation; and applied these ideas to real-
world medical problems.



Some Results
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The Big Picture

• Working in the space of the meaning of 
programs rather than program text

• (but, text is still needed)

• Representation matters more than search 
algorithm.

• Is this bag-of-tricks useful elsewhere (e.g. in 
machine learning)?
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