NN, NN NENEEEEE .
EENEEEENEENE NN SNEEEENEEENENEENEES
SEEEENENEN NN NN AN SN AN N SEENNNEENENENEEEEEE
BENEENENNE AR
ShsueuenunauennenanSgEy

p with meaning and confidence

colin johnson / university of kent

Schtick

® That techniques from the more formal end of
computer science/software engineering have
a lot to contribute to genetic programming
and related areas.

Overview

® the use of formal measures of program
correctness in fitness functions

® the use of scaffolding assumptions to evolve
recursive programs

® the use of geometric methods to explore the
semantic space of programs

Overview

® the use of formal measures of program
correctness in fitness functions

Confidence

® Ways to be confident that a system works:

® having confidence in the way in which it is constructed

® testing it on a rich set of test data

® verifying formally that it satisfies some formal
constraints against a model of the desired behaviour

Formal Verification: Model Checking

® Create a formal specification of desired
behaviour, in some temporal logic.

® “Once a coin has been inserted into the machine, at some
state in the future coffee must be dispensed.”

® “Once a coffee has been dispensed, another coffee cannot
be dispensed until another coin has been inserted.”

There are then ways of verifying that a particular
program satisfies these statements (model
checking; MC); essentially, a rigorous way of
counting sets of paths through the program,
quotiented out by each logical statement.

Using MC in GP

® Simple fitness function:

® fitness is defined as a count of how many statements in the
specification are satisfied

® Experiments:
® some success for simple examples
® in particular, by accumulating programs from simple ones

® but, reaches a complexity wall fairly quickly

® Moving forward:

® evaluating fitness from within the model checking algorithm,
by estimating how much of the space is covered

using a hybrid with traditional fitness; perhaps
auto-construct test data from specifications.

The Big Picture

® How can we integrate formal models of
desired program behaviour with GP? More
generally, interactions between GP and
formal models of knowledge/behaviour?

® We assume that the specification is accurate;
but, this is a dodgy assumption.

® Perhaps, there is a way forward where we use GP to
generate programs that satisfy the specification with
the aim of seeing whether the specification is broken!

® specification-generation cycle

Overview

® the use of scaffolding assumptions to evolve
recursive programs

Recursion (1)

® Consider the problem of evolving a program to
reverse a list of arbitrary length.

® Not a long program; here is a solution:

function reverse(list) {
if (empty(list)) {
return list;
}
else {
return snoc(
reverse (tail(list)),
head(list));

}

® _..s0,an ideal candidate for GP, yes!?

Recursion (2)

® No! Actually, rather hard...small errors get
amplified in the recursion.

® [nstead, create a scaffolding function:

function correct-reverse (list) {
if (list==[1,2,3]) return([3,2,1]1);
if (list==[2,3,1]) return([1l,3,2]):;

}

® Now, we can evolve using correct-reverse
wherever reverse should be used.

® |t is, by definition, correct on all of the
training set.

Recursion (3)

® |t works!
® Andit’s
efficient!

Reverse

(i) recursive approach
crossover-only
mutation-only
crossover-and-mutation

min I(M,i,z)
5,984,000
1,623,500

(i) scaffolding-based approach
crossover-only
mutation-only

crossover-and-mutation

min I(M,i,z)
2,299,590
792,000
252,000

Insert

(i) recursive approach
crossover-only
mutation-only
crossover-and-mutation

min I(M,i,z)

201,000
362,500

(i) scaffolding-based approach
crossover-only
mutation-only

crossover-and-mutation

min I(M,i,z)
228,456
169,500
49,000

The Big Picture

® Almost the opposite of before:

® Rather than taking something that is usually specified
by data and replacing it with a formal calcuation (MC
replacing testing) here we are taking something that is
usually done by calculation and replacing it by data!)

® The bigger picture here is about
“intermediate evaluation”—what can we say
about a program before it is completely
evaluated? How can we “fill in the gaps” for
something that isn’t yet executable!?

Overview

® the use of geometric methods to explore the
semantic space of programs

Semantics in Genetic Programming

® Focusing on exploring the space of program meanings
rather than the space of program text!

® The “semantics” of a program are, in this context, its
set of input-output behaviours across its input space
® either formalised in some way

® or via a sample of inputs (“sampling semantics”)

® Operators acting on the meaning of programs:

® semantic mutation: a small change to the input-output
behaviour of programs

® semantic crossover: taking two programs and finding a new
program that exhibits input-output behaviours “inbetween” the
two programs

Geometric Semantic Genetic
Programming: Lifting
GXsp
T1 x 12 > 1'3

lo e lo

GXp
01 x 02 > 03

T1,T2,T3: program text
O1,02,03: input-output mapping
O: genotype-phenotype mapping
GX: geometric crossover

Example: Geometric Crossover

OR

/ \ /
AND AND AND X3

/\ /\ /\
Ti TR NOT T2 AND NOT
I /N
TR X1 X2 X3

® FEssentially a “random mask”, selecting from
the two input trees.

® Similar structures exist for other domains
e.g.in curve fitting

...out hang on a minute...

OR

] . / 0\
Let’s have a look at this AND AND

again... ™=/ \N / \

. : T{ TR NOT T2
...each time we apply it, we |

double the size of the tree... TR

...s0 after many
generations, we have huge
trees.

We have dealt with this via simplification...
...but, more recently Vanesschi et al. have noted
that this can be handled by pointer
manipulation; and applied these ideas to real-
world medical problems.

Some Results

Problem Hits %

GPt SSHC SGP
avg| sd| avg| sd| avg
Comparator6 30.2(3.8| 90.9(3.5| 99.8[0.5| 99.5
Comparator8 30.312.8| 94.9|2.4|100.0|0.0| 99.9
Comparatorl0| 82.3(4.3| 95.3/0.9(100.0|0.0/100.0
Multiplexer6). & l' 3| 94.7/5.8| 99.8|0.5| 99.5
Multiplexerll 88.8|3.4|100.0(0.0| 99.9
Parity5 52.9(2.4| 56.3(4.9(99.7|0.9| 98.1
Parity6 50.5|0.7| 55.4|5.1| 99.7|0.6| 98.8
Parity7 50. 51.712.8| 99.9|0.2| 99.5
Parity8 '. 2| 50.6/0.9|100.0|0.0| 99.7
Parity9 50.0(0.0| 50.2(0.1({100.0|0.0| 99.5
Parityl0 50.0|0.0| 50.0/0.0/100.0|0.0| 99.4
Randomb 32.2(6.6| 90.9|6.0| 99.5(1.2| 98.8
Random6 33.616.6| 93.0|4.1| 99.9(0.4| 99.2
Random?7 ". 3| 92.9(3.8]| 99.9|0.2| 99.8|(
Random$8 89. 93.7 100.0(0.1] 99.9
Random9 33.113.7| 95.4|: .' 100.0|0.1|100.0|0.
Randoml0 5.3|2.3| 96.2|2.0/100.0({0.0(100.0]0.C
Randomll)6.6(1.6| 97.3/1.5/100.0{0.0|100.0|0.C
Trueb)0.0(0.0/100.0|0.0(99.9(0.6{100.0(0.C
Trueb)0.010.0{100.0|0.0| 99.8(0.6(100.0]0.C
True7)0.0{0.0{100.0(0.0{100.0{0.0|100.01|0.C
True8)0.0{0.0{100.0{0.0{100.0{0.0|100.0]0.

w
Q.

b~

COoOocoHNOOICOO
B W WD~ | 0o

™
—

C»—'
.:-c.o

Some Results

Problem

Hits %
GPt SSHC
avg| sd| avg| sd

SGP
avg| sd

Length

GP|GPt|SSHC|SGP

Comparator6
Comparator8
Comparatorl0

Multiplexer6
Multiplexerll

Parityd
Parity6
Parity7
Parity8
Parity9
Parityl0

Randomb
Random6
RandomT7
Random§
Random9
Random10
Randomll

Trued
Trueb
True7
True8

Some Results

Problem

GP
avg| sd

Hits %
GPt SSHC
avg| sd| avg| sd

SGP

avg

w
Q.

Length

GP|GPt|SSHC|SGP

Comparator6
Comparator8
Comparatorl0

Multiplexer6
Multiplexerll

Parityd
Parity6
Parity7
Parity8
Parity9
Parityl0

Randomb
Random6
RandomT7
Random§
Random9
Random10
Randomll

Trued
Trueb
True7
True8

99.5
99.9
100.0

b~

99.5
99.9

98.1
98.8
99.5
99.7
99.5
99.4

NEeLIPee

W o~ |~ 0o~

B Lo

98.8
99.2
99.8
99.9
100.0
100.0
100.0

Neeeo -

CEo -

=B s W

100.0
100.0
100.0
100.0

COLLee
k== [=X=

Some Results

Problem Hits % Length

GP GPt SSHC SGP
avg| sd| avg| sd| avg| sd| avg| sd|GP|GPt|SSHC|SGP
Comparator6 99.8]0.5
Comparator8 100.0]0.0
Comparatorl0 100.0(0.0|.
Multiplexer6 99.8]0.5
Multiplexerll 100.0]0.0
Parity5 99.710.9
Parity6 99.710.6
Parity7 99.9]0.2
Parity8 100.0]0.0
Parity9 100.0]0.0
Parityl0 100.0(0.0
Randomb 99.5]1.2
Random6 99.9]0.4
Random?7 99.9]0.2
Random$8 100.0(0.1
Random9 100.0(0.1].
Randoml0 100.0(0.0|.
Randomll 100.0(0.0|.
Trueb 99.9(0.6/.
Trueb 99.8|0.6|.
True7 100.0(0.0|.
True8 10.0] [100.0(0.0|.

The Big Picture

Working in the space of the meaning of
programs rather than program text

(but, text is still needed)

Representation matters more than search
algorithm.

Is this bag-of-tricks useful elsewhere (e.g. in
machine learning)?

Thanks to

Alberto Moraglio
Krzysztof Krawiec
Fernando Otero
Alex Freitas
Simon Thompson

Lawrence Beadle
He Pei

Questions/Comments

