
Formal Avenue for
Chasing Metamorphic Malware

Mila Dalla Preda
University of Verona, Italy

Joint work with Roberto Giacobazzi, Saumya Debray, Arun Lakhotia
presented by Isabella Mastroeni

CREST, May 30th 2013

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 1 / 25

Introduction Metamorphism

MALWARE DETECTION

MALWARE = MALicious softWARE

Malware detector
Is a program D that determines whether a program P is malicious

D(P) =

{
true if D determines that P is malicious
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)
COMPLETE = no false negatives (no missed alarms)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 2 / 25

Introduction Metamorphism

MALWARE DETECTION

MALWARE = MALicious softWARE

Malware detector
Is a program D that determines whether a program P is malicious

D(P) =

{
true if D determines that P is malicious
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)
COMPLETE = no false negatives (no missed alarms)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 2 / 25

Introduction Metamorphism

MALWARE DETECTION

MALWARE = MALicious softWARE

Malware detector
Is a program D that determines whether a program P is malicious

D(P) =

{
true if D determines that P is malicious
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)

COMPLETE = no false negatives (no missed alarms)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 2 / 25

Introduction Metamorphism

MALWARE DETECTION

MALWARE = MALicious softWARE

Malware detector
Is a program D that determines whether a program P is malicious

D(P) =

{
true if D determines that P is malicious
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)
COMPLETE = no false negatives (no missed alarms)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 2 / 25

Introduction Metamorphism

MALWARE DETECTION

Standard malware detectors: Signature Checking

Identify a sequence of instructions which is unique to a malware (virus
signature) then scan programs for signatures

Low false positive rate, easy to use
Cumbersome, difficult to extract automatically, easy to foil
How can we escape signature checking?

BY DYNAMICALLY MODIFYING MALWARE STRUCTURE!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 3 / 25

Introduction Metamorphism

MALWARE DETECTION

Standard malware detectors: Signature Checking

Identify a sequence of instructions which is unique to a malware (virus
signature) then scan programs for signatures

Low false positive rate, easy to use
Cumbersome, difficult to extract automatically, easy to foil
How can we escape signature checking?

BY DYNAMICALLY MODIFYING MALWARE STRUCTURE!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 3 / 25

Introduction Metamorphism

MALWARE DETECTION

Standard malware detectors: Signature Checking

Identify a sequence of instructions which is unique to a malware (virus
signature) then scan programs for signatures

Low false positive rate, easy to use
Cumbersome, difficult to extract automatically, easy to foil
How can we escape signature checking?

BY DYNAMICALLY MODIFYING MALWARE STRUCTURE!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 3 / 25

Introduction Metamorphism

ESCAPE SIGNATURE CHECKING

Polymorphic malware
The malware code is encrypted
and contains a decryption routine
that decrypts the code and then
executes it.

Metamorphic malware
The malware applies
semantics-preserving
transformations (e.g. obfuscations)
to mutate its own code as it
propagates.

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 4 / 25

Introduction Metamorphism

ESCAPE SIGNATURE CHECKING

Polymorphic malware
The malware code is encrypted
and contains a decryption routine
that decrypts the code and then
executes it.

Metamorphic malware
The malware applies
semantics-preserving
transformations (e.g. obfuscations)
to mutate its own code as it
propagates.

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 4 / 25

Introduction Metamorphism

METAMORPHIC CODE - EXAMPLES

EQUIVALENT CODE REPLACEMENT

MOV EAX, [X] XOR EAX, EAX

MOV EBX, [Y] ADD EAX, [X]
ADD EAX, EBX ADD EAX, [Y]
MOV [X], EAX MOV [X], EAX

REGISTER RENAMING

MOV EAX, [X] MOV ECX, [X]
MOV EBX, [Y] MOV EAX, [Y]
ADD EAX, EBX ADD ECX, EAX

MOV [X], EAX MOV [X], ECX

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 5 / 25

Introduction Metamorphism

METAMORPHIC CODE - EXAMPLES

EQUIVALENT CODE REPLACEMENT

MOV EAX, [X] XOR EAX, EAX

MOV EBX, [Y] ADD EAX, [X]
ADD EAX, EBX ADD EAX, [Y]
MOV [X], EAX MOV [X], EAX

REGISTER RENAMING

MOV EAX, [X] MOV ECX, [X]
MOV EBX, [Y] MOV EAX, [Y]
ADD EAX, EBX ADD ECX, EAX

MOV [X], EAX MOV [X], ECX

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 5 / 25

Introduction Metamorphism

METAMORPHIC CODE - EXAMPLES

CODE REORDERING

MOV EAX, [X] MOV EBX, [Y]
MOV EBX, [Y] MOV EAX, [X]
ADD EAX, EBX ADD EAX, EBX

MOV [X], EAX MOV [X], EAX

GARBAGE INSERTION

MOV EAX, [X] MOV EAX, [X]
MOV EBX, [Y] MOV EBX, [Y]
ADD EAX, EBX ADD EAX, EBX

MOV [X], EAX PUSH, ESI

MOV [X], EAX

POP ESI

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 6 / 25

Introduction Metamorphism

METAMORPHIC CODE - EXAMPLES

CODE REORDERING

MOV EAX, [X] MOV EBX, [Y]
MOV EBX, [Y] MOV EAX, [X]
ADD EAX, EBX ADD EAX, EBX

MOV [X], EAX MOV [X], EAX

GARBAGE INSERTION

MOV EAX, [X] MOV EAX, [X]
MOV EBX, [Y] MOV EBX, [Y]
ADD EAX, EBX ADD EAX, EBX

MOV [X], EAX PUSH, ESI

MOV [X], EAX

POP ESI

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 6 / 25

Motivation The Problem

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 7 / 25

Motivation The Problem

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

Abstract models of malware that ideally capture the essence of
being malicious while abstracting from the details that are
modified by metamorphism;

system call, symbolic names, automata, cfg, rewriting rules towards
normal forms, model checking....

A PRIORI KNOWLEDGE OF THE METAMORPHIC TRANSFORMATIONS

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 8 / 25

Motivation The Problem

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

Abstract models of malware that ideally capture the essence of
being malicious while abstracting from the details that are
modified by metamorphism;

system call, symbolic names, automata, cfg, rewriting rules towards
normal forms, model checking....

A PRIORI KNOWLEDGE OF THE METAMORPHIC TRANSFORMATIONS

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 8 / 25

Motivation The Problem

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

Abstract models of malware that ideally capture the essence of
being malicious while abstracting from the details that are
modified by metamorphism;

system call, symbolic names, automata, cfg, rewriting rules towards
normal forms, model checking....

A PRIORI KNOWLEDGE OF THE METAMORPHIC TRANSFORMATIONS

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 8 / 25

Motivation The Problem

THE CHALLENGE

The malware code contains the metamorphic engine (70%)

Metamorphic signature

is a characterization of the set L of the possible code variants
generated by a metamorphic malware

σ IS A METAMORPHIC VARIANT ⇒ σ ∈ L

THE PROBLEM

Is there a way for systematically extracting a metamorphic signature
without a priori knowledge of the metamorphic transformations used?

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 9 / 25

Motivation The Problem

THE CHALLENGE

The malware code contains the metamorphic engine (70%)

Metamorphic signature

is a characterization of the set L of the possible code variants
generated by a metamorphic malware

σ IS A METAMORPHIC VARIANT ⇒ σ ∈ L

THE PROBLEM

Is there a way for systematically extracting a metamorphic signature
without a priori knowledge of the metamorphic transformations used?

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 9 / 25

Motivation The Problem

THE CHALLENGE

The malware code contains the metamorphic engine (70%)

Metamorphic signature

is a characterization of the set L of the possible code variants
generated by a metamorphic malware

σ IS A METAMORPHIC VARIANT ⇒ σ ∈ L

THE PROBLEM

Is there a way for systematically extracting a metamorphic signature
without a priori knowledge of the metamorphic transformations used?

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 9 / 25

Motivation The Problem

THE CHALLENGE

The malware code contains the metamorphic engine (70%)

Metamorphic signature

is a characterization of the set L of the possible code variants
generated by a metamorphic malware

σ IS A METAMORPHIC VARIANT ⇒ σ ∈ L

THE PROBLEM

Is there a way for systematically extracting a metamorphic signature
without a priori knowledge of the metamorphic transformations used?

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 9 / 25

Motivation The Problem

IDEALLY . . .

Program Evolution Graph

A precise description of the
evolution of the code during
execution

Given a self-modifying program P0 we would like to generate its
program evolution graph (or a sound approximation)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 10 / 25

Motivation The Problem

IDEALLY . . .

Program Evolution Graph

A precise description of the
evolution of the code during
execution

Given a self-modifying program P0 we would like to generate its
program evolution graph (or a sound approximation)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 10 / 25

The Idea

THE IDEA

The ME is part of the code of the metamorphic malware

⇒ The description of the metamorphic behaviour – code evolution – is
inside the trace semantics of the metamorphic malware

The state contains a description of the program that is executed

Program Other
InfoState

We use Abstract Interpretation!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 11 / 25

The Idea

THE IDEA

The ME is part of the code of the metamorphic malware

⇒ The description of the metamorphic behaviour – code evolution – is
inside the trace semantics of the metamorphic malware

The state contains a description of the program that is executed

Program Other
InfoState

We use Abstract Interpretation!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 11 / 25

The Idea

THE IDEA

The ME is part of the code of the metamorphic malware

⇒ The description of the metamorphic behaviour – code evolution – is
inside the trace semantics of the metamorphic malware

The state contains a description of the program that is executed

Program Other
InfoState

We use Abstract Interpretation!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 11 / 25

The Idea

THE IDEA

The ME is part of the code of the metamorphic malware

⇒ The description of the metamorphic behaviour – code evolution – is
inside the trace semantics of the metamorphic malware

The state contains a description of the program that is executed

Program Other
InfoState

We use Abstract Interpretation!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 11 / 25

The Idea

TRACE SEMANTICS

Trace semantics of a metamorphic program P

...

...

...

Fix-point computation of trace semantics JPK = lfpFP ∈ ℘(Σ∗) where
FP : ℘(Σ∗)→ ℘(Σ∗)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 12 / 25

The Idea

THE IDEA

Isolate code evolution from the semantics of the metamorphic
malware while abstracting from regular computation

...

...

...

IDEA

Extracting metamorphic signatures is
approximating malware semantics

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 13 / 25

The Idea

THE IDEA

Isolate code evolution from the semantics of the metamorphic
malware while abstracting from regular computation

...

...

...

IDEA

Extracting metamorphic signatures is
approximating malware semantics

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 13 / 25

The behavioral model Phase Semantics

PHASE SEMANTICS

...

...

...

We define a function F]
P : ℘(Progr∗)→ ℘(Progr∗) whose fix-point

computation JPK] = lfpF]
P ∈ ℘(Progr∗) returns all the possible paths of

the program evolution graph

PHASE SEMANTICS JPK] = lfpF]
P ∈ ℘(Progr∗)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 14 / 25

The behavioral model Phase Semantics

PHASE SEMANTICS

...

...

...

We define a function F]
P : ℘(Progr∗)→ ℘(Progr∗) whose fix-point

computation JPK] = lfpF]
P ∈ ℘(Progr∗) returns all the possible paths of

the program evolution graph

PHASE SEMANTICS JPK] = lfpF]
P ∈ ℘(Progr∗)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 14 / 25

The behavioral model Phase Semantics

PHASE SEMANTICS

Idea: collect the computation that belong to the same malware version

...

...

PHASE 1 PHASE 2 PHASE 3

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 15 / 25

The behavioral model Abstraction

NEED TO APPROXIMATE . . .

Phase semantics is an AI of trace semantics with no loss of precision,

given 〈℘(Σ∗),⊆〉 −→←−
α]

γ]

〈℘(Progr∗),⊆〉: α](lfpFP) = lfpF]P

CONCRETE TEST FOR METAMORPHISM

Q is a metamorphic variant of P0 iff
∃P0P1 . . .Pn ∈ JP0K],∃i ∈ [0,n] : Pi = Q

no false positives, no false negatives

Phase semantics is precise but undecidable

Need to design suitable abstract domains for the
approximation of phase semantics!!!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 16 / 25

The behavioral model Abstraction

NEED TO APPROXIMATE . . .

Phase semantics is an AI of trace semantics with no loss of precision,

given 〈℘(Σ∗),⊆〉 −→←−
α]

γ]

〈℘(Progr∗),⊆〉: α](lfpFP) = lfpF]P

CONCRETE TEST FOR METAMORPHISM

Q is a metamorphic variant of P0 iff
∃P0P1 . . .Pn ∈ JP0K], ∃i ∈ [0,n] : Pi = Q

no false positives, no false negatives

Phase semantics is precise but undecidable

Need to design suitable abstract domains for the
approximation of phase semantics!!!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 16 / 25

The behavioral model Abstraction

NEED TO APPROXIMATE . . .

Phase semantics is an AI of trace semantics with no loss of precision,

given 〈℘(Σ∗),⊆〉 −→←−
α]

γ]

〈℘(Progr∗),⊆〉: α](lfpFP) = lfpF]P

CONCRETE TEST FOR METAMORPHISM

Q is a metamorphic variant of P0 iff
∃P0P1 . . .Pn ∈ JP0K], ∃i ∈ [0,n] : Pi = Q

no false positives, no false negatives

Phase semantics is precise but undecidable

Need to design suitable abstract domains for the
approximation of phase semantics!!!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 16 / 25

The behavioral model Abstraction

NEED TO APPROXIMATE . . .

Phase semantics is an AI of trace semantics with no loss of precision,

given 〈℘(Σ∗),⊆〉 −→←−
α]

γ]

〈℘(Progr∗),⊆〉: α](lfpFP) = lfpF]P

CONCRETE TEST FOR METAMORPHISM

Q is a metamorphic variant of P0 iff
∃P0P1 . . .Pn ∈ JP0K], ∃i ∈ [0,n] : Pi = Q

no false positives, no false negatives

Phase semantics is precise but undecidable

Need to design suitable abstract domains for the
approximation of phase semantics!!!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 16 / 25

The behavioral model Abstraction

ABSTRACTING METAMORPHISM

Design GC: 〈℘(Progr∗),⊆〉 −→←−
αA

γA
〈A,≤A〉

Interpret the fix-point computation of phase semantics on the
abstract domain A:

αA(JPK]) ≤A JPKA

Abstract phase semantics JPKA can be used as a metamorphic
signature

ABSTRACT TEST FOR METAMORPHISM

Q is a metamorphic variant of P wrt A iff αA(Q) ≤A JPKA

no false negatives

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 17 / 25

The behavioral model Abstraction

ABSTRACTING METAMORPHISM

Design GC: 〈℘(Progr∗),⊆〉 −→←−
αA

γA
〈A,≤A〉

Interpret the fix-point computation of phase semantics on the
abstract domain A:

αA(JPK]) ≤A JPKA

Abstract phase semantics JPKA can be used as a metamorphic
signature

ABSTRACT TEST FOR METAMORPHISM

Q is a metamorphic variant of P wrt A iff αA(Q) ≤A JPKA

no false negatives

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 17 / 25

The behavioral model Abstraction

ABSTRACTING METAMORPHISM

Design GC: 〈℘(Progr∗),⊆〉 −→←−
αA

γA
〈A,≤A〉

Interpret the fix-point computation of phase semantics on the
abstract domain A:

αA(JPK]) ≤A JPKA

Abstract phase semantics JPKA can be used as a metamorphic
signature

ABSTRACT TEST FOR METAMORPHISM

Q is a metamorphic variant of P wrt A iff αA(Q) ≤A JPKA

no false negatives

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 17 / 25

The behavioral model FSA abstraction

PHASES AS FSA

Code abstraction α̊ : Progr → FSA

P0
1: mov f,100 8: mov MEM[f], MEM[4]
2: input ⇒ MEM[a] 9: mov MEM[f+1], MEM[5]
3: if (MEM[a] mod 2) goto 7 10: mov MEM[f+2], encode(goto 6)
4: mov b,MEM[a] 11: mov 4, encode(nop)
5: mov a,MEM[a]/2 12: mov 5, encode(goto MEM[f])
6: goto 8 13: mov f, MEM[f]+3
7: mov a,(MEM[a]+1)/2 14: goto 2

1 3

4

7

2 9

10111213

MEM[f]:=
100

input =>
MEM[a] MEM[a] mod 2

5 6

8

MEM[b]:=
MEM[a]

MEM[a]:=
MEM[a]/2

goto
MEM[MEM[f]]:=
 MEM[4]

MEM[MEM[f]+1]:=
 MEM[5]MEM[MEM[f]+2]:=

 encode(goto 6) MEM[4]:=
encode(nop)

MEM[5]:=
encode(goto MEM[f])

MEM[f]:=
MEM[f] + 3

14

goto

α̊(P0)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 18 / 25

The behavioral model FSA abstraction

PHASE SEMANTICS AS TRACES OF FSA

Define a correct static approximation of the iteration function
F FSA : ℘(FSA∗)→ ℘(FSA∗)
We derive a sound approximation of the phase semantics on the
domain of traces of FSA:

α̊(JP0K]) ≤FSA JP0KFSA ∈ ℘(FSA∗)

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 19 / 25

The behavioral model FSA abstraction

PHASE SEMANTICS AS TRACES OF FSA

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M0

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M1

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M2

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M3

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

M4

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

103

101

nop

MEM[a] := MEM[a]/2

goto

6

1

MEM[f] := 100

104

goto

100

MEM[b] : = MEM[a]

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 20 / 25

The behavioral model FSA abstraction

WIDENING PHASES: REGULAR METAMORPHISM

Collapsing a trace of FSA into a single FSA:
〈FSA/≡,vFSA〉 where A1 vFSA A2 ⇔ L(A1) ⊆ L(A2)

let WP be the limit of the widening sequence:
W0 = α̊(P) Wi+1 = WiOF FSA

P (Wi)

ABSTRACT TEST FOR METAMORPHISM ON FSA/≡

Q is a metamorphic variant of P wrt FSA/≡ iff ˚ABS(Q) vFSA WP
no false negatives

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 21 / 25

The behavioral model FSA abstraction

WIDENING PHASES: REGULAR METAMORPHISM

Collapsing a trace of FSA into a single FSA:
〈FSA/≡,vFSA〉 where A1 vFSA A2 ⇔ L(A1) ⊆ L(A2)

let WP be the limit of the widening sequence:
W0 = α̊(P) Wi+1 = WiOF FSA

P (Wi)

ABSTRACT TEST FOR METAMORPHISM ON FSA/≡

Q is a metamorphic variant of P wrt FSA/≡ iff ˚ABS(Q) vFSA WP
no false negatives

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 21 / 25

The behavioral model FSA abstraction

WIDENING PHASES: REGULAR METAMORPHISM

MEM[a] mod 2

T F

 MEM[f] := 100

goto

 MEM[a] :=(MEM[a]+1)/2

goto

 input => MEM[a]

ME

goto

nop

MEM[b]:= MEM[a] goto

MEM[a]:=MEM[b]

nop

MEM[b] : = MEM[a]

MEM[a] : = MEM[a]/2

goto

MEM[a]:= MEM[a]/2

MEM[a]:= MEM[a]/2

goto

Spurious trace: mov f, 100; input => a; MEM[a] mod 2 = 0; MEM[b]:= MEM[a];
goto; MEM[b]:=MEM[a].....

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 22 / 25

The behavioral model

What we have done:
A precise model of metamorphic code evolution named phase
semantics
Requires no a priori knowledge about the metamorphic engine
A method for approximating the Phase semantics
A computable approximation of regular metamorphism

WHAT’S NEXT

Suitable for semi-automatic malware analysis:
generation-test-refine
Abstract interpretation based learning
More advanced abstractions: e.g., context free metamorphism
Design of new abstract domain for the analysis of code variants
. . .

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 23 / 25

The behavioral model

What we have done:
A precise model of metamorphic code evolution named phase
semantics
Requires no a priori knowledge about the metamorphic engine
A method for approximating the Phase semantics
A computable approximation of regular metamorphism

WHAT’S NEXT

Suitable for semi-automatic malware analysis:
generation-test-refine
Abstract interpretation based learning
More advanced abstractions: e.g., context free metamorphism
Design of new abstract domain for the analysis of code variants
. . .

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 23 / 25

The behavioral model

METAPHOR: TOY EXAMPLE

P = mov e,10

MOV

MOV

PUSH

PUSH

POP

POP

MOV

MOV POP

POP

PUSH

MOV

PUSH

POP

POP

MOV

PUSH

Approximated rules:
push; pop→ mov
mov; mov→ mov

Compression rules:
push e2; pop e1→ mov e1,e2

mov e2,e1; push e2→ push e1

pop e2; mov e1,e2→ pop e1

mov
mov,mov
push,pop
mov,mov,mov
mov,push,pop
push,pop,mov
mov,mov,mov,mov
mov,mov,push,pop
mov,push,pop,mov
push,pop,push,pop

...

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 24 / 25

The behavioral model

LEARNING ME

Joint work with Arun Lakhotia

BinJuice a tool for binary control flow graph comparison
Virus Evol
Extract syntactic differences between the control flow graph of
successive variants (365 rules)
Keep only semantic preserving rules
Reduce rules (65 rules)
Captures only block transformations, not structure
transformations!

Dalla Preda (CREST 2013) Chasing Metamorphism CREST, May 30th 2013 25 / 25

	Introduction
	Metamorphism

	Motivation
	The Problem

	The Idea
	The behavioral model
	Phase Semantics
	Abstraction
	FSA abstraction
	

