
New approaches for chasing metamorphic malware

Isabella Mastroeni
University of Verona, Italy

Joint work with Roberto Giacobazzi, Neil Jones, Mila Dalla Preda

30 May 2013

Mastroeni (CREST 2013) Chasing malware 30 May 2013 1 / 29

Introduction METAMORPHISM

ESCAPE SIGNATURE CHECKING

Polymorphic malware
The malware code is encrypted
and contains a decryption routine
that decrypts the code and then
executes it.

Metamorphic malware
The malware applies
semantics-preserving
transformations (e.g. obfuscations)
to mutate its own code as it
propagates.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 2 / 29

Introduction METAMORPHISM

ESCAPE SIGNATURE CHECKING

Polymorphic malware
The malware code is encrypted
and contains a decryption routine
that decrypts the code and then
executes it.

Metamorphic malware
The malware applies
semantics-preserving
transformations (e.g. obfuscations)
to mutate its own code as it
propagates.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 2 / 29

Introduction METAMORPHISM

ATTACKING METAMORPHISM

Our research directions
Metamorphism is mainly based on obfuscation techniques:

We can study obfuscation techniques

Different from reverse engineering: we are not interested in the
original code, we look for properties characterizing semantic
invariants;

We can extract behavioural malware characterizations

We can use higher-order (abstract) non-interference properties for
characterizing the interaction of malware with the environment;
Further application: We can study how to defeat anti-emulation
techniques.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 3 / 29

Introduction METAMORPHISM

ATTACKING METAMORPHISM

Our research directions
Metamorphism is mainly based on obfuscation techniques:

We can study obfuscation techniques
Different from reverse engineering: we are not interested in the
original code, we look for properties characterizing semantic
invariants;

We can extract behavioural malware characterizations

We can use higher-order (abstract) non-interference properties for
characterizing the interaction of malware with the environment;
Further application: We can study how to defeat anti-emulation
techniques.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 3 / 29

Introduction METAMORPHISM

ATTACKING METAMORPHISM

Our research directions
Metamorphism is mainly based on obfuscation techniques:

We can study obfuscation techniques
Different from reverse engineering: we are not interested in the
original code, we look for properties characterizing semantic
invariants;

We can extract behavioural malware characterizations
We can use higher-order (abstract) non-interference properties for
characterizing the interaction of malware with the environment;
Further application: We can study how to defeat anti-emulation
techniques.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 3 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

EXAMPLE IN PRACTICE: EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

c©Giaco – Nancy 2011 – p.12/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 4 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

EXAMPLE IN PRACTICE: EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk):
mov eax, [edx+0Ch]
inc eax
push ebx
dec eax
push [eax]
call ReleaseLock

c©Giaco – Nancy 2011 – p.12/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 4 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

EXAMPLE IN PRACTICE: EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

c©Giaco – Nancy 2011 – p.12/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 4 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

PROTECTION BY OBSCURITYPROTECTION BY OBSCURITY: CODE OBFUSCATION
O : P → P is a code obfuscator if it is an obfuscating compiler:

➪
It is potent: O(P) is more complex (ideally unintelligible) than P ;

➪
It preserves the observational behaviour of programs !O(P)" = !P"
[C. Collberg et al. ’97, ’98]

The limit. Obfuscating programs is (im)possible:
Even under restrictive hypothesis a general purpose obfuscator

generating perfectly unintelligible code (virtual black-box) does not exist!
[Barak et al. ’01]

The challenge. Design obfuscators that work against specific attacks
Extensional properties of programs are undecidable [Rice ’53]

....so formal methods and static analysis are born!

c©Giaco – Nancy 2011 – p.7/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 5 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

APPROXIMATION VS OBSCURITY
APPROXIMATION VS OBSCURITY

➪
Because of undecidability we need approximation

➪
Even if decidable, it is typically too complex to trace/analyze/understand
(500kC ∼ 600 mY) so we need approximation

➪
Approximation is pervasive in computing and code understanding

There are only approximated interpretations of programs

➪
Making obscure is making the approximated interpreter blind!

➪
Potent obscure transformations correspond to hardly improvable
approximations

How can we formalize all this?

c©Giaco – Nancy 2011 – p.21/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 6 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

WHY ABSTRACT INTERPRETATION?

WHY ABSTRACT INTERPRETATION?
Abstract Interpretation (1977) is the a general model for the (static or dynamic)

approximation of semantics of discrete dynamic systems

➪
Including: Static program analysis, dynamic analysis, profiling,
debugging, tracing, compilation, de-compilation, type checking and type
inference, model checking and predicate abstraction, trajectory
evaluation, testing, proof systems, etc.

⊥

lfp(f)

x ≤ f(x)

f(x) ≤ x

x = f(x)

!

c©Giaco – Nancy 2011 – p.23/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 7 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

ABSTRACT INTERPRETATIONABSTRACT INTERPRETATION
Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

α

γ
γ(α(x))

x
Abstract

Concrete

! !

α

Galois Connection: 〈C , α, γ,A〉, A and C are complete lattices.

Closures: 〈uco(C),#〉 set of all possible abstract domains,
A1 # A2 if A1 is more concrete than A2

c©Giaco – Nancy 2011 – p.24/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 8 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

ABSTRACT INTERPRETATIONABSTRACT INTERPRETATION
Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

γ(α(x))

x

Abstract

Concrete

!

γ◦α ∈ uco(C)

Galois Connection: 〈C , α, γ,A〉, A and C are complete lattices.

Closures: 〈uco(C),$〉 set of all possible abstract domains,
A1 $ A2 if A1 is more concrete than A2

c©Giaco – Nancy 2011 – p.25/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 8 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

APPROXIMATING INTERPRETATION: BCAAPPROXIMATING INTERPRETATION: BCA

G is a sound approximation of F if

α◦F ◦γ ! G

c©Giaco – Nancy 2011 – p.26/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 9 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

SOUNDNESS AND COMPLETENESSSOUNDNESS AND COMPLETENESS
[Cousot & Cousot ’79]

➪
A program P ∈ P and a domain of computation C

➪
An interpreter: !·" : P× C −→ C

➪
(Approximate) observable properties: ρ = γ◦α ∈ uco(C)

➪
DERIVE A SOUND APPROXIMATE SPECIFICATION !P"!

ρ(!P"(x)) ≤ !P"!(x)

➪
THE LIMIT CASE: COMPLETENESS

ρ(!P"(x)) = !P"!(x) iff ρ(!P"(x)) = ρ(!P"(ρ(x)))

c©Giaco – Nancy 2011 – p.27/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 10 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

SOUNDNESS AND COMPLETENESSSOUNDNESS AND COMPLETENESS

➪
WhichChess : Img −→ ℘(Chess) returns the type of chess on the
chessboard.

➪
ρ : Img −→ Img such that: ρ

()

=

➪
η : ℘(Chess) −→ [0, 12] counts the number of different types of chess

η

(

WhichChess
(

ρ

()))

= η

(

WhichChess
())

= 12

≥ η

(

WhichChess
())

= 7

c©Giaco – Nancy 2011 – p.28/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 10 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

COMPLETENESS IN ABSTRACT INTERPRETATION
➪ COMPLETENESS IN ABSTRACT INTERPRETATION
➪

BACKWARD SOUNDNESS:
NO INFORMATION IS LOST BY APPROXIMATING THE INPUT/OUTPUT

➪
ρ◦f ≤ ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(x))

ρ(f(ρ(x)))

f !(ρ(x))
Abstract

c©Giaco – Nancy 2011 – p.29/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 11 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

COMPLETENESS IN ABSTRACT INTERPRETATION
COMPLETENESS IN ABSTRACT INTERPRETATION

➪
BACKWARD COMPLETENESS:
NO LOSS OF PRECISION IS ACCUMULATED BY APPROXIMATING THE INPUT

➪
ρ◦f = ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(x)) ρ(f(ρ(x)))

f !(ρ(x))

=

Abstract

c©Giaco – Nancy 2011 – p.29/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 11 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

COMPLETENESS IN ABSTRACT INTERPRETATION
COMPLETENESS IN ABSTRACT INTERPRETATION

➪
FORWARD COMPLETENESS:
NO INFORMATION IS LOST BY APPROXIMATING THE OUTPUT

➪
f ◦ρ ≤ ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(ρ(x)))

f !(ρ(x))
Abstract

ρ

f(ρ(x))f

c©Giaco – Nancy 2011 – p.29/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 11 / 29

Defeating program obfuscation PROGRAM OBFUSCATION

COMPLETENESS IN ABSTRACT INTERPRETATION
COMPLETENESS IN ABSTRACT INTERPRETATION

➪
FORWARD COMPLETENESS:
NO INFORMATION IS LOST BY APPROXIMATING THE OUTPUT

➪
f ◦ρ = ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(ρ(x)))

f !(ρ(x))
Abstract

ρ

f(ρ(x))f =

c©Giaco – Nancy 2011 – p.29/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 11 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

OBSCURITY AS INCOMPLETENESS
OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

➪
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

➪
A program transformation τ : P → P such that !P" = !τ(P)".

➪
ρ B-complete for !·" if ρ(!P") = !P"ρ

τ obfuscates P if !P"ρ ! !τ(P)"ρ

!P"ρ ! !τ(P)"ρ ⇐⇒ ρ(!τ(P)") ! !τ(P)"ρ

c©Giaco – Nancy 2011 – p.34/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 12 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

OBSCURITY AS INCOMPLETENESS
OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
P : x = a ∗ b

Sign is an obvious abstraction of ℘(Z):

0− 0+

℘(Z)

0

. . . 1 . . .

. . .

.

0+0−

0

∅

℘(Z)

{−1, −3, −4} {2, 3, 5}

∅

c©Giaco – Nancy 2011 – p.34/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 12 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

OBSCURITY AS INCOMPLETENESS
OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
P : x = a ∗ b

Sign is an abstraction of ℘(Z):

0− 0+

℘(Z)

0

. . . 1 . . .

. . .

.

0+0−

0

∅

℘(Z)

{−1, −3, −4} {2, 3, 5}

∅

c©Giaco – Nancy 2011 – p.34/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 12 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

OBSCURITY AS INCOMPLETENESS
OBSCURITY AS INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

x = 0;

P : x = a ∗ b −→ τ(P) : if b ≤ 0 then {a =−a;b =−b};

while b #= 0 {x = a+ x;b = b− 1}

➪
Sign is complete for P :

✔ !P"Sign = λa,b. Sign(a ∗ b)

➪
Sign is incomplete for τ(P):

✔ !τ(P)"Sign = λa,b.

{
0 if a = 0 ∨ b = 0

℘(Z) otherwise

➪
Is there any way to get τ(P) systematically out of P?

c©Giaco – Nancy 2011 – p.34/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 12 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

EXPLOITING INCOMPLETENESS
EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c©Giaco – Nancy 2011 – p.36/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 13 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

THE IDEA [GIACOBAZZI, JONES & MASTROENI ’12]OUR IDEA
Build a general-purpose program transformer by programming a
self-interpreter in a style to give the desired transformation

CLAIM: !P" = !P ′", by simple equational reasoning:

!P"(d) = !interp"(P,d) definition of self-interpreter
= !!spec"(interp,P)"(d) definition of specializer
= !P’"(d) definition of P’

Therefore the function

P !−→ !spec"(interp,P)

is a semantics-preserving program transformer!!

➪
We need to change the interpretation: interp ! interp+

c©Giaco – Nancy 2011 – p.40/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 14 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

AN EASY EXAMPLE: DATA OBFUSCATION
AN EASY EXAMPLE: DATA OBFUSCATION

Similar to Drape 2004 technique, but automated!!

Modify the simple self-interpreter so that

➪
all values in the store are obfuscated, e.g., by multiplying by 2: mutual
inverse functions obf (x) and dob(x) obfuscate or invert obfuscation.

➪
We consistently modify interp so that:

✔ input values are obfuscated in the initial store;
✔ variable values are obfuscated just before putting in the store;
✔ output values are de-obfuscated in the program’s final store;
✔ expression evaluation yields non-obfuscated values:

» constant values are not obfuscated,
» variables’ values must be de-obfuscated when got from the store

c©Giaco – Nancy 2011 – p.41/64Mastroeni (CREST 2013) Chasing malware 30 May 2013 15 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

AN EASY EXAMPLE: THE INTERPRETERA TWISTED INTERPRETER FOR v !→ 2v

input P, d ; Program to be interpreted, and its data
pc := 2; Initialise program counter and obfuscated store:
store := [in !→ obf (d), out !→ obf (0), x1 !→ obf (0), . . .];

while pc < length(P) do
instruction := lookup(P, pc);

case instruction of Dispatch on syntax
skip : pc := pc + 1; Obfuscate values when stored:
x := e : store := store[x !→ obf (eval(e, store))]; pc := pc + 1;

. . . endw ;

output dob(store[out]);

obf (V) = 2 ∗ V ; dob(V) = V /2 Obfuscation/de-obfuscation
eval(e, store) = case e of

constant : obf (e)

variable : dob(store(e)) De-obfuscate variable values
e1 + e2 : eval(e1, store) + eval(e2, store)

e1 − e2 : eval(e1, store) − eval(e2, store)

. . .

c©Giaco – Nancy 2011 – p.42/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 16 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

AN EASY EXAMPLE: THE OUTPUT
OUTPUT FROM DATA OBFUSCATION

The source program is automatically transformed into this equivalent
obfuscated one

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y ;
7.end

!−→

1.input x ;
1.5.x := 2 ∗ x ; Obfuscate input x
2.y := 2 ∗ 2; Obfuscate y := 2
3.while x/2 > 0 do De-obfuscate x

4.y := 2 ∗ (y/2 + 2);
5.x := 2 ∗ (x/2 − 1)

endw
6.output y/2; De-obfuscate output
7.end

c©Giaco – Nancy 2011 – p.43/64

Mastroeni (CREST 2013) Chasing malware 30 May 2013 17 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

SIGN ANALYSIS SIGN ANALYSIS

➪
Sign analysis is complete for multiplication ∗: exact information.

➪
Sign analysis is incomplete for addition +: imprecise information

∗ − 0 +

− + 0 −

0 0 0 0

+ − 0 +

+ − 0 +

− − − "(!)

0 − 0 +

+ "(!) + +

Our trick: ...let the interpreter evaluate!

eval(e, store) = case e of
e1 + e2 : eval(e1, store) + eval(e2, store)

e1 ∗ e2 : let v1 = eval(e1, store), v2 = eval(e2, store)

in v1 ∗ (v2 − 1)+v1

c©Giaco – Nancy 2011 – p.44/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 18 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

SIGN ANALYSIS SIGN ANALYSIS

➪
Sign analysis is complete for multiplication ∗: exact information.

➪
Sign analysis is incomplete for addition +: imprecise information

P:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y ∗ y ;
5.x := x − 1

endw
6.output y ;
7.end

"−→

P’:

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y ∗ (y − 1) + y ;
5.x := x − 1

endw
6.output y ;
7.end

Sign analysis yields y "→ + in P, but it yields y "→ # in P’.

c©Giaco – Nancy 2011 – p.45/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 18 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

THE BIG GOAL CONCLUSION

➪
A deep relation between obfuscation and interpretation

➪
Attack and defense are two aspects of interpretation

➪
Define a uniform framework for information concealment in programming
languages

✔ General enough to include most known methods
✔ Formal enough to provide a (possibly) provable secure environment

for obfuscation (and steganography) relatively to a fixed attacker
✔ Rich enough to provide advanced design and evaluation methods
✔ Practical enough to generate truly obfuscated

➪
The goal: develop a theory and practice for code obfuscation (and
steganography) in order to make these technologies as practical as
analogous ones in other media (e.g., in DRM of audio and video)

c©Giaco – Nancy 2011 – p.62/64
Mastroeni (CREST 2013) Chasing malware 30 May 2013 19 / 29

Defeating program obfuscation OBSCURITY AS INCOMPLETENESS

COMPLETENESS AND METAMORPHISM

Obfuscation is incompleteness
Obfuscation deceives all analyses incomplete wrt the made
transformation

HENCE...
Incompleteness transformers characterise the set of deceived

analyses! [Giacobazzi & Mastroeni ’12]

Metamorphism is obfuscation
Malware protects its code by using obfuscation techniques.

HENCE...
Completeness transformers characterises the set of successful

malware detection analyses?

Mastroeni (CREST 2013) Chasing malware 30 May 2013 20 / 29

Malware detection

MALWARE DETECTION

Malware detector

D(P,M) =

{
true if D determines that P is infected with M
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)
COMPLETE = no false negatives (no missed alarms)

Mastroeni (CREST 2013) Chasing malware 30 May 2013 21 / 29

Malware detection

MALWARE DETECTION

Malware detector

D(P,M) =

{
true if D determines that P is infected with M
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)

COMPLETE = no false negatives (no missed alarms)

Mastroeni (CREST 2013) Chasing malware 30 May 2013 21 / 29

Malware detection

MALWARE DETECTION

Malware detector

D(P,M) =

{
true if D determines that P is infected with M
false otherwise

An ideal malware detector is sound and complete:

SOUND = no false positives (no false alarms)
COMPLETE = no false negatives (no missed alarms)

Mastroeni (CREST 2013) Chasing malware 30 May 2013 21 / 29

Malware detection METAMORPHISM

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

[Dalla Preda et al ’07]
Formal framework for malware detection based on program semantics
and abstract interpretation.

LIMIT

It assumes that the malware APPENDS its code and behaviour to the
target program without interacting with it

Mastroeni (CREST 2013) Chasing malware 30 May 2013 22 / 29

Malware detection METAMORPHISM

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

[Dalla Preda et al ’07]
Formal framework for malware detection based on program semantics
and abstract interpretation.

LIMIT

It assumes that the malware APPENDS its code and behaviour to the
target program without interacting with it

Mastroeni (CREST 2013) Chasing malware 30 May 2013 22 / 29

Malware detection METAMORPHISM

CHASING METAMORPHISM

In order to detect metamorphic malware variants malware detector
should be based on SEMANTIC program features.

[Dalla Preda et al ’07]
Formal framework for malware detection based on program semantics
and abstract interpretation.

LIMIT

It assumes that the malware APPENDS its code and behaviour to the
target program without interacting with it

Mastroeni (CREST 2013) Chasing malware 30 May 2013 22 / 29

Malware detection THE IDEA

HOANI AND MD: THE IDEA

Metamorphism defeats the malware detector if
it does generate an INTERFERENCE!

File%
V1.0%

Malware%detector%

Signature%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 23 / 29

Malware detection THE IDEA

HOANI AND MD: THE IDEA

Metamorphism defeats the malware detector if
it does generate an INTERFERENCE!

File%
V1.1%

Malware%detector%

Signature%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 23 / 29

Malware detection THE IDEA

HOANI AND MD: THE IDEA

Metamorphism defeats the malware detector if
it does generate an INTERFERENCE!

File%
V2.0%

Malware%detector%

Signature%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 23 / 29

Malware detection THE IDEA

HOANI AND MD

IDEA

Define a more general framework for metamorphic malware infection
where it is possible to express the interactions between different code

fragments (e.g. the viral code and the target program)

[Sabelfed and Mayers ’03]
Non-interference (NI) reasons on data dependencies

[Giacobazzi and Mastroeni ’04]
Abstract non-interference (ANI) generalizes NI by weakening the
dependences between data

High Order ANI (HOANI): Lift the ANI framework to programs.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 24 / 29

Malware detection THE IDEA

HOANI AND MD

IDEA

Define a more general framework for metamorphic malware infection
where it is possible to express the interactions between different code

fragments (e.g. the viral code and the target program)

[Sabelfed and Mayers ’03]
Non-interference (NI) reasons on data dependencies

[Giacobazzi and Mastroeni ’04]
Abstract non-interference (ANI) generalizes NI by weakening the
dependences between data

High Order ANI (HOANI): Lift the ANI framework to programs.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 24 / 29

Malware detection THE IDEA

HOANI AND MD

IDEA

Define a more general framework for metamorphic malware infection
where it is possible to express the interactions between different code

fragments (e.g. the viral code and the target program)

[Sabelfed and Mayers ’03]
Non-interference (NI) reasons on data dependencies

[Giacobazzi and Mastroeni ’04]
Abstract non-interference (ANI) generalizes NI by weakening the
dependences between data

High Order ANI (HOANI): Lift the ANI framework to programs.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 24 / 29

Malware detection THE IDEA

HOANI AND MD

IDEA

Define a more general framework for metamorphic malware infection
where it is possible to express the interactions between different code

fragments (e.g. the viral code and the target program)

[Sabelfed and Mayers ’03]
Non-interference (NI) reasons on data dependencies

[Giacobazzi and Mastroeni ’04]
Abstract non-interference (ANI) generalizes NI by weakening the
dependences between data

High Order ANI (HOANI): Lift the ANI framework to programs.

Mastroeni (CREST 2013) Chasing malware 30 May 2013 24 / 29

The ingredients MALWARE DETECTION

MALWARE DETECTION

Malware detector

D(P,M) =

{
true if D determines that P is infected with M
false otherwise

Consider a set O of obfuscating transformations ranged over by O.
Let M ↪→ P denote that program P is infected with malware M.

Relative soundness and completeness

D is SOUND for O if D(P,M) = true ⇒ ∃O ∈ O : O(M) ↪→ P
D is COMPLETE for O if ∀O ∈ O : O(M) ↪→ P ⇒ D(P,M) = true

Mastroeni (CREST 2013) Chasing malware 30 May 2013 25 / 29

The ingredients MALWARE DETECTION

MALWARE DETECTION

Malware detector

D(P,M) =

{
true if D determines that P is infected with M
false otherwise

Consider a set O of obfuscating transformations ranged over by O.
Let M ↪→ P denote that program P is infected with malware M.

Relative soundness and completeness

D is SOUND for O if D(P,M) = true ⇒ ∃O ∈ O : O(M) ↪→ P
D is COMPLETE for O if ∀O ∈ O : O(M) ↪→ P ⇒ D(P,M) = true

Mastroeni (CREST 2013) Chasing malware 30 May 2013 25 / 29

The ingredients HOANI

HOANI

JP1Kη = JP2Kη ∧ JQ1Kφ = JQ2Kφ ⇒ JI(Q1,P1)Kρ = JI(Q2,P2)Kρ

I

⌘

�

⇢

Pi%

Qi%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 26 / 29

The ingredients HOANI

HOANI

JP1Kη = JP2Kη ∧ JQ1Kφ = JQ2Kφ ⇒ JI(Q1,P1)Kρ = JI(Q2,P2)Kρ

I

⌘

�

⇢

Pi%

Qi%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 26 / 29

The ingredients HOANI

HOANI

JP1Kη = JP2Kη ∧ JQ1Kφ = JQ2Kφ ⇒ JI(Q1,P1)Kρ = JI(Q2,P2)Kρ

I

⌘

�

⇢

Pi%

Qi%

Mastroeni (CREST 2013) Chasing malware 30 May 2013 26 / 29

HOANI and MD MD BASED ON HOANI

HOANI-BASED MD

P ∈ Progr , JPK its (concrete) semantics on the domain C
ρ property on Progr , JPKρ the abstract semantics of program P

ANIMD
ANIMDρ(M,P) = true ⇔ ∃T ∈ Progr : JI(M,T)Kρ = JPKρ

Metamorphic engine (ME)
Let φ the semantic property preserved by the ME:

Oφ =
{
O
∣∣∣ ∀M,M1 ∈ Prog : JMKφ = JM1Kφ ⇔ M1 = O(M)

}
HOANIφρ

JMKφ = JM1Kφ ⇒ JI(M,T)Kρ = JI(M1,T)Kρ

Mastroeni (CREST 2013) Chasing malware 30 May 2013 27 / 29

HOANI and MD MD BASED ON HOANI

HOANI-BASED MD

P ∈ Progr , JPK its (concrete) semantics on the domain C
ρ property on Progr , JPKρ the abstract semantics of program P

ANIMD
ANIMDρ(M,P) = true ⇔ ∃T ∈ Progr : JI(M,T)Kρ = JPKρ

Metamorphic engine (ME)
Let φ the semantic property preserved by the ME:

Oφ =
{
O
∣∣∣ ∀M,M1 ∈ Prog : JMKφ = JM1Kφ ⇔ M1 = O(M)

}
HOANIφρ

JMKφ = JM1Kφ ⇒ JI(M,T)Kρ = JI(M1,T)Kρ

Mastroeni (CREST 2013) Chasing malware 30 May 2013 27 / 29

HOANI and MD MD BASED ON HOANI

HOANI-BASED MD

P ∈ Progr , JPK its (concrete) semantics on the domain C
ρ property on Progr , JPKρ the abstract semantics of program P

ANIMD
ANIMDρ(M,P) = true ⇔ ∃T ∈ Progr : JI(M,T)Kρ = JPKρ

Metamorphic engine (ME)
Let φ the semantic property preserved by the ME:

Oφ =
{
O
∣∣∣ ∀M,M1 ∈ Prog : JMKφ = JM1Kφ ⇔ M1 = O(M)

}

HOANIφρ

JMKφ = JM1Kφ ⇒ JI(M,T)Kρ = JI(M1,T)Kρ

Mastroeni (CREST 2013) Chasing malware 30 May 2013 27 / 29

HOANI and MD MD BASED ON HOANI

HOANI-BASED MD

P ∈ Progr , JPK its (concrete) semantics on the domain C
ρ property on Progr , JPKρ the abstract semantics of program P

ANIMD
ANIMDρ(M,P) = true ⇔ ∃T ∈ Progr : JI(M,T)Kρ = JPKρ

Metamorphic engine (ME)
Let φ the semantic property preserved by the ME:

Oφ =
{
O
∣∣∣ ∀M,M1 ∈ Prog : JMKφ = JM1Kφ ⇔ M1 = O(M)

}
HOANIφρ

JMKφ = JM1Kφ ⇒ JI(M,T)Kρ = JI(M1,T)Kρ

Mastroeni (CREST 2013) Chasing malware 30 May 2013 27 / 29

Concluding remarks DISCUSSION

WHAT CAN WE DO?

CERTIFYING MD
We can characterize the most concrete property φ such that ANIMD

is SOUND and COMPLETE for Oφ!

TRAINING MD
Given Oφ we can characterize the most concrete property ρ such that

ANIMDρ is COMPLETE for Oφ!

SMDρ [Dalla Preda et al. ’07]

SMDρ(M,P) = true ⇔
∃Q,T ∈ Progr : JPK = JI(Q,T)K ∧ ρ(JMK) = ρ(JQK)

WHAT’S NEW IN ANIMD
ANIMDρ(M,P) is more general than SMDρ(M,P).

Mastroeni (CREST 2013) Chasing malware 30 May 2013 28 / 29

Concluding remarks DISCUSSION

WHAT CAN WE DO?

CERTIFYING MD
We can characterize the most concrete property φ such that ANIMD

is SOUND and COMPLETE for Oφ!

TRAINING MD
Given Oφ we can characterize the most concrete property ρ such that

ANIMDρ is COMPLETE for Oφ!

SMDρ [Dalla Preda et al. ’07]

SMDρ(M,P) = true ⇔
∃Q,T ∈ Progr : JPK = JI(Q,T)K ∧ ρ(JMK) = ρ(JQK)

WHAT’S NEW IN ANIMD
ANIMDρ(M,P) is more general than SMDρ(M,P).

Mastroeni (CREST 2013) Chasing malware 30 May 2013 28 / 29

Concluding remarks DISCUSSION

WHAT CAN WE DO?

CERTIFYING MD
We can characterize the most concrete property φ such that ANIMD

is SOUND and COMPLETE for Oφ!

TRAINING MD
Given Oφ we can characterize the most concrete property ρ such that

ANIMDρ is COMPLETE for Oφ!

SMDρ [Dalla Preda et al. ’07]

SMDρ(M,P) = true ⇔
∃Q,T ∈ Progr : JPK = JI(Q,T)K ∧ ρ(JMK) = ρ(JQK)

WHAT’S NEW IN ANIMD
ANIMDρ(M,P) is more general than SMDρ(M,P).

Mastroeni (CREST 2013) Chasing malware 30 May 2013 28 / 29

Concluding remarks DISCUSSION

WHAT CAN WE DO?

CERTIFYING MD
We can characterize the most concrete property φ such that ANIMD

is SOUND and COMPLETE for Oφ!

TRAINING MD
Given Oφ we can characterize the most concrete property ρ such that

ANIMDρ is COMPLETE for Oφ!

SMDρ [Dalla Preda et al. ’07]

SMDρ(M,P) = true ⇔
∃Q,T ∈ Progr : JPK = JI(Q,T)K ∧ ρ(JMK) = ρ(JQK)

WHAT’S NEW IN ANIMD
ANIMDρ(M,P) is more general than SMDρ(M,P).

Mastroeni (CREST 2013) Chasing malware 30 May 2013 28 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI

Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI

Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;

Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;

Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;

Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

Concluding remarks CONCLUSIONS

FUTURE WORKS

Obfuscation and metamorphism
Understand how completeness can help in defeating
metamorphism;

Malware and HOANI
Understand and develop HOANI and its application to MD;
Develop a systematic strategy for the design of the best MD given a
class of code variants

Develop a technique for learning the ME that generates a given set of
variants;
Understand how to generate the invariant property φ of ME;
Derive the observation property ρ that characterizes detection for
ANIMDρ;

This approach can be used for avoiding anti-emulation techniques
used by modern malware [Dinaburg et al. ’08, Kang et al. ’09].

Mastroeni (CREST 2013) Chasing malware 30 May 2013 29 / 29

	Introduction
	Metamorphism

	Defeating program obfuscation
	Program obfuscation
	Obscurity as incompleteness

	Malware detection
	Metamorphism
	The Idea

	The ingredients
	Program Integration
	Malware Detection
	HOANI

	HOANI and MD
	MD based on HOANI

	Concluding remarks
	Discussion
	Conclusions

