

 Exploit-Generation with
Acceleration

Daniel Kroening, Matt Lewis, Georg Weissenbacher

● Under-Approximating Loops in C Programs for Fast
Counterexample Detection
Daniel Kroening, Matt Lewis, Georg Weissenbacher, CAV 2013
http://www.kroening.com/papers/cav2013-acceleration.pdf

● Verification and Falsification of Programs with Loops using
Predicate Abstraction
Daniel Kroening, Georg Weissenbacher, FACJ 2010
http://www.kroening.com/papers/facj-loops-2009.pdf

http://www.kroening.com/papers/cav2013-acceleration.pdf
http://www.kroening.com/papers/facj-loops-2009.pdf

The Authors

Matt Lewis

PhD student in software
verification

Funded by MSR

Former Googler

Former penetration tester

Sloth enthusiast

The Authors

Georg
Weissenbacher

Assistant Professor
TU Vienna

Former Oxford DPhil

Funded by MSR

 Remote exploit for XBOX Media Center

Exploits

● Function calls store return location on stack
● If this can be overwritten with attacker-

controlled data, control is hijacked
● Typically done via stack-allocated buffers,

but increasingly more with heap objects

Stack

void f(void)
{
 char buffer[100];

 …
 strcpy(buffer, INPUT);
 …
}

void g(void)
{
 …
 f();
 …
}

IP

SP

return address

Stack

void f(void)
{
 char buffer[100];

 …
 strcpy(buffer, INPUT);
 …
}

void g(void)
{
 …
 f();
 …
}

IP

SP return address

BUFFER

SP

Stack

void f(void)
{
 char buffer[100];

 …
 strcpy(buffer, INPUT);
 …
}

void g(void)
{
 …
 f();
 …
}

SP

return address

BUFFER IP

Stack

void f(void)
{
 char buffer[100];

 …
 strcpy(buffer, INPUT);
 …
}

void g(void)
{
 …
 f();
 …
}

SP return address

BUFFER

IP

Stack

void f(void)
{
 char buffer[100];

 …
 strcpy(buffer, INPUT);
 …
}

void g(void)
{
 …
 f();
 …
}

SP

return address

BUFFER
IP

Variants

● Use ROP in case data/stack
is non-executable

● Use heap buffers (grows towards stack)
● Deal with address space randomization

CBMC

● Bounded model checker for C/C++
● First widely-deployed analyser

using bit-accurate semantics with SAT
● Users are primarily in the automotive domain
● BSD-licensed, source available

Finding Vulnerabilities with
Bounded Model Checking

We can unwind loops a fixed number of times

char A[100];
char c;
int i = 0;

while(c = read()) {
 A[i++] = c;
}

i_0 = 0;
c_0 = read();
assume(c_0 != 0);
A[i_0] = c_0;
assert(i_0 < 100);
i_1 = i_0 + 1;
c_1 = read();
assume(c_1 == 0);

Unwind twice

This gives us a problem we can pass to a SAT solver.

The first two
characters read The loop runs

exactly once
Check we didn't
overflow the buffer

Finding Vulnerabilities with
Bounded Model Checking

The SAT problem we just generated doesn't
have a solution (which means we couldn't find
a bug).

That's because the bug doesn't show up until
the loop has run 101 times.

That means we have to unwind the loop 101
times. This is really slow!

Worse still, we don't know how many times we
need to unwind!

Acceleration

The idea is that we replace a loop with a single
expression that encodes an arbitrary number
of loop iterations. We call these closed forms.

while (i < 100) {
 i++;
}

niterations = nondet();
i += niterations;
assume(i <= 100);

Accelerate

Number of loop iterations

Calculating Closed Forms

We need some way of taking a loop and
finding its closed form. There are many
options:

● Match the text of the loop
● Find closed forms with constraint solving
● Linear algebra

We use constraint solving, since it allows us to reuse a lot of existing code.

Dotting i's, Crossing t's

There are a few more things we need to do to
make an accelerator:

● Ensure that the loop is able to run as many
times as we'd like it to (weakest precondition)

● Make sure we handle integer overflows
correctly (path splitting)

● Add the effects of array update (quantifiers)

For more details, see our CAV 2013 paper.

Example
int sz = read();
char *A = malloc(sz);
char c;
int i = 0;

while (c = read()) {
 A[i++] = c;
}

int sz = read();
char *A = malloc(sz);
char c;
int i = 0;

int niters = nondet();
assume(forall i < j <= niters .
 A[j] != 0);
i += niters;
assert(i <= sz);

Accelerate

sz = read();
i_0 = 0;
niters = nondet();
assume(forall i < j <= niters .
 A[j] != 0);
i_1 = i_0 + niters;
assert(i_1 <= sz);

Unwind once

BUG:

niters = sz + 1

SAT solve

Note: there's no fixed number of unwindings that will always hit this bug!

A Harder Bug

“I believe that these two files summarize well
some of the reasons why code analysis tools
are not very good at finding sophisticated bugs
with a very low false positive rate.”

 -- Halvar Flake talking about the Sendmail
crackaddr bug.

Let's analyse those two files...

The crackaddr Bug

We need to alternate
between these two
branches several times

...So that we can
eventually push this write
beyond the end of the
buffer

Accelerating crackaddr

We can accelerate this by unrolling the loop
twice and accelerating the resulting code.

We get the following accelerators:

int niters = nondet();
assume(forall 0 <= j < niters .
 input[2*j] == '(' && input[2*j+1] == ')');
upperlimit += niters;

int niters = nondet();
d += niters;
assume(d < upperlimit);
assert(d < &localbuf[200]);

and

These are enough to find the bug!

Download me!

● Prototype accelerator available as part of
goto-instrument

● Source-to-source transformation:
use your favourite program analyser!

● Get via
svn co http://www.cprover.org/svn/cbmc/trunk

Exploits

● Actual exploits require more work
● Precise heap and stack models
● Address space randomization

● Frequently done for binaries
(really want hybrid source/binary)

The Future

● Accelerate more complex arithmetic in loops
● Accelerate loops that do weird things to

heap data structures
● (Also: accelerate floating-point loops)
● Engineering effort to scale up to huge

codebases
(we're currently eyeing up Debian...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

