5 UNIVERSITY OF

oooooo
- L

¥ CAMBRIDGE

Rendezvous: A search engine
for binary code

Wei Ming Khoo, Alan Mycroft, Ross Anderson
University of Cambridge

CREST Open Workshop on Malware
29 May 2013

Demo: http://www.rendezvousalpha.com

http://rendezvousalpha.com
http://rendezvousalpha.com

Software reverse engg.

Software RE is tedious, requires expertise

® Decompilers

Boomerang, REC Studio 4, Anatomizer, Andromeda, exetoc, desquirr

- Current state-of-the-art: Hex-Rays, USD$1,160 per license per year
+ expertise

415 man-hours to decompile 1,500 LoC comprising 8% of code base
[VanEmmerik’04]

® Stuxnet

Assuming deployed in June 2009, took a year to be discovered, a
further 5 months for AV and SCADA experts to decipher the

payload

But, code reuse is
prevalent

And increasingly so due to advances in
software mining and SBSE

Catalysts include market competitiveness,

application complexity, quality of reusable
components [Schmidt’99,°00,’06]

Six open source projects: On average 747% of code
base was external [Haefliger’'08]

Sometimes illegally: >250 products found GPL non-
compliant, most famously Linksys WRT54G

Code reuse in malware

® Malware producers operate very much like corporations

Innovative Marketing Ukraine: revenue of about $180 million in 2008, complete
with HR dept and call center (Finkle’10)

® ZeuS 2.0.8.9 source code leaked in May 201 | revealed the following FOSS
components

xterm/key2symucs.c (© April 2001 Markus G. Kuhn, U. Cambridge)
UltraVNC circa 2005

BEA disassembly engine

UCL compression lib 1.0.3

Info-zip 2.3.2

Mersenne twister PRNG circa 2002 (Matsumoto & Nishimura)

® 94.3% LoC of ZeuS 2.0.8.9 was reused, only 5.7% was new functionality

Proposed solution

Search-based reverse engineering (SBRE)

“Google” it:

Search

I'm Feeling Lucky

(

Instead of “How to decompile?!” we ask
“Given a candidate decompilation, how good a match is it?”

Similar shift occurred for statistical machine translation

5

Take away slide

Software RE is tedious, expertise required

Code reuse is common in software, malware
included

We propose reframing: software RE as a
search problem, relying on existing and
available software to obtain source code

Q: How can we do this in a way that is compiler-
agnostic! (Assuming we deal with packers,
obfuscators)

How we achieve this

Design trade-offs
Feature extraction
Indexing & Querying

Experimental results

Design space

We want features that can uniquely identify functions
We want speed + accuracy:VWe chose Speed first

Speed meant that we chose static over dynamic
analysis (Assumption: no obfuscation)

We studied heuristic features from existing literature
that can be extracted directly from a disassembly:

- Instruction mnemonics n-grams, n-perms
- Control-flow sub-graphs, extended sub-graphs

= Data constants

Instruction mhemonics

® |nstruction mnemonic (textual) differs from
an opcode (hex), e.g. 0x8b (load) and 0x&89

(store) map to ‘mov’

® Assume a Markov property, nt" token is
influenced by the previous n - 1 tokens

® Consideredn=1,2,3,4
push, mov, push —> 0x731973 —> XvxFGF

9

n-grams vs n-perms

® n-gram is sequence-based, n-perm is set-
based

mov ebp, esp mov ebp, esp
sub esp, 0x10 movl —-0x4 (ebp), 0x1
movl -0x4 (ebp), 0x1 sub esp, 0x10

® For instance, two n-grams (moy, sub, movl)
& (mov, movl, sub)

® Only I n-perm (mov, movl, sub)

Control-flow k-graphs

® k-graph is a connected sub-graph comprising k
nodes, compute them all (k=3,4,5,6,7)

® Convert to k-by-k matrix and compute its

canonical form, rep as string (Nauty graph library)
e o 3 4

Wh] 00 O

2 n N

0
1
0
1

-l

_-0 O

0

0
1
0

O = O =00

1
0
0
0

C OO =l

0
0
0
0

XvxFGF

—_—

5 baNUAL

Extended k-graphs

® One shortcoming of k-graphs: uniqueness
low for small k

® We propose extended k-graphs

® Extended k-graph includes edges that have
one end point at an internal node, but have

another at an external virtual node, V*

W.OllO W.OOIO
nlo—~oco vo—~oo
N~~~ WO O —~
— o000 oo o —~
O — O Olo — o
Nl— oo nl— oo
—lcoc o o oo
- N N N N \O

Extended k-graphs

4
@\
@\

Extended k-graph

k-graph

|3

Constants

® Empirical observation that data constants
do not change with compiler or options

® Considered 32-bit integers and strings

® |mmediate operands, pointer offsets
(excluding stack and frame pointer offsets)

® |nteger may be an address, do a lookup

Feature extraction

Executable
Disassemble l

Disassembly

Tokenise l l l
Mnemonic Control-flow Data
n-grams sub-graphs Constants
Token-specific | | |
processing l

Alphabetic strings (Query terms)

|5

Indexing & querying

corpus

alphabetic
strings

I «
-

|
I
I
|
I
|
I
I

]

I
I
I
I
I
I
I
I
|
I
|
I
I
I

—{ Indexer]

Indexing

I

Term Freq.

|

: Querying

Query

e

Inverted

Index

— — w— w— w— w— w— w— ot

I
I
I
I
I
I
I
I
I
I
}
I
I
I
I
I
I
|
I
|

— — w— o [— e— e— —

Search
results

/_\/

Unknown
.exe

alphabetic
strings

Indexing & Querying

2 query models—the Boolean model (BM), and
vector space model (VSM)

BM is set-based, boolean operators such as AND,
OR and NOT

VSM is distance-based, weight vectors computed
via normalised term frequencies

Our model is based on the combination of the
two: documents are first filtered via the BM, then
ranked and scored by the VSM

Indexing & Querying

Executable is abstracted to set of terms
3 strategies to deal with long queries, for desired query length /o
Term de-duplication, Padding and Unique term selection

Term de-duplication (up to 2 x lp) a simple strategy that reduces
the query size

Padding: Include common terms prepended by NOT

E.e. For [p = 3,and query is A AND B,pad with A AND B AND
NOT C

Unique term selection: Select only the terms with frequency <
dfihreshold

Scoring

® Default CLucene scoring function

core — COOY¥ ; .V(Q)'V(D)
eorel@ D) = coordl@ D) & g

where coord 1s a score factor,

C 1s a normalisation factor,

V(Q)-V(D) 1s the dot product of the weighted vectors, and
IV(O)l 1s the Euclidean norm

VVhat makes a good
model?

® True positives (tp): a correctly retrieved document
relevant to the query

® False positive (fp): an incorrectly retrieved irrelevant
document

® False negative (fn): a missing but relevant document

o Ip tp
precision = recall =
tp +Jp tp + Jn
precision - recall 5 - (precision - recall)

=

2:

precision + recall (4 - precision + recall)

20

Implementation

Disassembly: Dyninst binary instrumentation
framework (http://dyninst.org)

Indexing & Querying: CLucene text search
engine (http://clucene.sourceforge.net)

Term frequency map is a Bloom filter

Code abstraction: 10,500 lines of C++

Indexing/Querying: 1,000 lines of C++

21

http://dyninst.org
http://dyninst.org
http://clucene.sourceforge.net
http://clucene.sourceforge.net

Questions

Optimal value of dfimresnoia?

Accuracy of various abstractions?
Accuracy for different compilers?
Accuracy for different compiler options!?

Timing

22

Datasets

e GNU C Library 2.16 (glibc)

- 2,706 functions, |.18 MLoC
- Compiled with gcc -O1,-O2

® GNU coreutils 6.10 (coreutils)
- 1,205 functions, 70,000 LoC

- Compiled with gcc, clang

23

df threshold

< dfinreshoiqg | Precision Recall — Fy
1 0.202 0.395 0.331
2 0.177 0.587 0.401
3 0.165 0.649 0410
4 0.161 0.677 0413
5 0.157 0.673 0.406
6 0.160 0.702 0.418
7 0.159 0.709 0.419
8 0.157 0.708 0.415
9 0.157 0.716 0.418
10 0.155 0.712 0.414
11 0.151 0.696 0.405
12 0.152 0.702 0.408
13 0.153 0.705 0.410
o' 0.151 0.709 0.408

24

F-2 measure

n-grams vs n-perms

0.8 |-

06 L n | m-gram n-perm
I | 121 121

0.4 | 2 | 1483 306
3 | 6337 542

02 | 4 | 16584 889

0

1 2 3 4

n (Size of n-gram)

n-grams out-performed n-perms tor n > 1

Possible explanation: Unique terms

25

k-graphs vs ex. k-graphs

glibc
k-graph extended k-graph
Precision Recall Fb Precision Recall Fb
3-graph | 0.070 0.133 0.113 | 0.022 0.062 0.046
4-graph | 0.436 0.652 0.593 | 0.231 0.398 0.348
S-graph | 0.730 0.700 0.706 | 0.621 0.600 0.604
6-graph | 0.732 0.620 0.639 | 0.682 0.622 0.633
7-graph | 0.767 0.609 0.635 | 0.728 0.610 0.631
coreutils
k-graph extended k-graph
Precision Recall F5 Precision Recall F5
3-graph | 0.110 0.200 0.172 | 0.042 0.080 0.068
4-graph | 0.401 0.586 0.537 | 0.218 0.360 0.318
5-graph | 0.643 0.623 0.627 | 0.553 0.531 0.535
6-graph | 0.617 0.527 0.543 | 0.660 0.602 0.613
7-graph | 0.664 0.560 0.578 | 0.663 0.566 0.583

26

Mixed n-grams

glibc coreutils
14+2-gram | 0.682 0.619
143-gram | 0.741 0.649
14+4-gram | 0.777 0.671
243-gram | 0.737 0.655
2+4-gram | 0.777 0.675
3+4-gram | 0.765 0.671

® |+4-grams & 2+4-grams were best

performers

® Out-performed the best n-gram model

(coreutils: 0.764, glibc: 0.664)

27

Mixed k-graphs

glibc | coreutils
F F
3+4-graphs | 0.607 0.509
3+5-graphs | 0.720 0.630
3+6-graphs | 0.661 0.568
3+7-graphs | 0.655 0.559
4+5-graphs | 0.740 0.624
4+6-graphs | 0.741 0.624
4+7-graphs | 0.749 0.649
S5+6-graphs | 0.752 0.650
5+7-graphs | 0.768 0.657
6+7-graphs | 0.720 0.624

5+/-graphs best performer for both sets

28

Constants

Precision Recall F5

glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

Possible explanation: None of the
functions in glibc had strings, whilst
889 functions, or 40.3% of functions in
coreutils did

29

Composite models

Precision Recall F>5
olibe 4-gram/5-graph/constants 0.870 0.866 0.867
1-gram/4-gram/5-graph/ 0.850 0.841 0.843
7-graph/constants
4-gram/5-graph/constants 0.118 0.925 0.390
(r =10)
coreutils 4-gram/5-graph/constants 0.835 0.829 0.830
2-gram/4-gram/5-graph/ 0.833 0.798 0.805
7-graph/constants
4-gram/5-graph/constants 0.203 0.878 0.527
(r = 10)

® More components hot necessarily better

® | ooked at recall rates for top |10 results

30

Results at a glance

glibc coreutils

Model F 9 F2

Best n-gram (4-gram) 0.764 0.665
Best k-graph (5-graph) 0.706 0.627
Constants 0.681 0.772
Best mixed n-gram (1+4-gram) 0.777 0.671
Best mixed k-graph (5+7-graph) 0.768 0.657
Best composite (4-gram/5-graph/constants) | 0.867 0.830

31

False negatives

® 342 from glibc: 206 had 6 instructions or less

® gctisent

- In-lining of fstab_convert

= Instruction substitution: xor ax, ax to mov ax, 0;
call/leave/ret to leave/jmp

- Instruction re-ordering

- No n-grams, k-graphs, constants in common

32

Timing

Average (s) | Worst (s)
n-gram 46.684 51.881
: k-graph 110.874 114.922
Abstraction |/ " Ts | 627,656 680.148
null 11.013 15.135
Query construction 6.133 16.125
Query 116.101 118.005
Total (2410 functions) 907.448 081.081
Total per function 0.377 0.407

® Timing for 2,410 coreutils functions

® 0.40/s per function in worst case

® (Constants extraction can be streamlined further

33

Conclusion

Software RE is tedious, expertise required
Code reuse is common in software

We propose reframing: software RE as a
search problem

Able to achieve F> rates of 0.867 & 0.830
combining mnemonics, k-graphs and constants

http://www.rendezvousalpha.com

34

http://www.rendezvousalpha.com
http://www.rendezvousalpha.com

