
Rendezvous: A search engine
for binary code

Wei Ming Khoo, Alan Mycroft, Ross Anderson
University of Cambridge

CREST Open Workshop on Malware
29 May 2013

Demo: http://www.rendezvousalpha.com

1

http://rendezvousalpha.com
http://rendezvousalpha.com

Software reverse engg.
Software RE is tedious, requires expertise

• Decompilers

- Boomerang, REC Studio 4, Anatomizer, Andromeda, exetoc, desquirr

- Current state-of-the-art: Hex-Rays, USD$1,160 per license per year
+ expertise

- 415 man-hours to decompile 1,500 LoC comprising 8% of code base
[VanEmmerik’04]

• Stuxnet

- Assuming deployed in June 2009, took a year to be discovered, a
further 5 months for AV and SCADA experts to decipher the
payload

2

But, code reuse is
prevalent

And increasingly so due to advances in
software mining and SBSE

• Catalysts include market competitiveness,
application complexity, quality of reusable
components [Schmidt’99, ’00, ’06]

• Six open source projects: On average 74% of code
base was external [Haefliger’08]

• Sometimes illegally: >250 products found GPL non-
compliant, most famously Linksys WRT54G

3

Code reuse in malware
• Malware producers operate very much like corporations

- Innovative Marketing Ukraine: revenue of about $180 million in 2008, complete
with HR dept and call center (Finkle’10)

• ZeuS 2.0.8.9 source code leaked in May 2011 revealed the following FOSS
components

- xterm/key2symucs.c (© April 2001 Markus G. Kuhn, U. Cambridge)

- UltraVNC circa 2005

- BEA disassembly engine

- UCL compression lib 1.0.3

- Info-zip 2.3.2

- Mersenne twister PRNG circa 2002 (Matsumoto & Nishimura)

• 94.3% LoC of ZeuS 2.0.8.9 was reused, only 5.7% was new functionality

4

Proposed solution
Search-based reverse engineering (SBRE)

Instead of “How to decompile?” we ask
“Given a candidate decompilation, how good a match is it?”

Similar shift occurred for statistical machine translation
5

“Google” it:

Take away slide

• Software RE is tedious, expertise required

• Code reuse is common in software, malware
included

• We propose reframing: software RE as a
search problem, relying on existing and
available software to obtain source code

• Q: How can we do this in a way that is compiler-
agnostic? (Assuming we deal with packers,
obfuscators)

6

How we achieve this

• Design trade-offs

• Feature extraction

• Indexing & Querying

• Experimental results

7

Design space
• We want features that can uniquely identify functions

• We want speed + accuracy: We chose Speed first

• Speed meant that we chose static over dynamic
analysis (Assumption: no obfuscation)

• We studied heuristic features from existing literature
that can be extracted directly from a disassembly:

- Instruction mnemonics n-grams, n-perms

- Control-flow sub-graphs, extended sub-graphs

- Data constants

8

Instruction mnemonics

• Instruction mnemonic (textual) differs from
an opcode (hex), e.g. 0x8b (load) and 0x89
(store) map to ‘mov’

• Assume a Markov property, nth token is
influenced by the previous n - 1 tokens

• Considered n = 1, 2, 3, 4

9

push, mov, push 0x73f973 XvxFGF

n-grams vs n-perms

• n-gram is sequence-based, n-perm is set-
based

• For instance, two n-grams (mov, sub, movl)
& (mov, movl, sub)

• Only 1 n-perm (mov, movl, sub)

10

Control-flow k-graphs

• k-graph is a connected sub-graph comprising k
nodes, compute them all (k = 3, 4, 5, 6, 7)

• Convert to k-by-k matrix and compute its
canonical form, rep as string (Nauty graph library)

11

XvxFGF
baNUAL

Extended k-graphs

12

• One shortcoming of k-graphs: uniqueness
low for small k

• We propose extended k-graphs

• Extended k-graph includes edges that have
one end point at an internal node, but have
another at an external virtual node, V∗

Extended k-graphs

13

k-graph Extended k-graph

Constants

14

• Empirical observation that data constants
do not change with compiler or options

• Considered 32-bit integers and strings

• Immediate operands, pointer offsets
(excluding stack and frame pointer offsets)

• Integer may be an address, do a lookup

Feature extraction

Executable
Disassemble

Tokenise

Token-specific
processing

Disassembly

Mnemonic
n-grams

Alphabetic strings (Query terms)

Control-flow
sub-graphs

Data
Constants

15

Indexing & querying

16

corpus

alphabetic
strings

alphabetic
strings

Indexing & Querying

17

• 2 query models—the Boolean model (BM), and
vector space model (VSM)

• BM is set-based, boolean operators such as AND,
OR and NOT

• VSM is distance-based, weight vectors computed
via normalised term frequencies

• Our model is based on the combination of the
two: documents are first filtered via the BM, then
ranked and scored by the VSM

Indexing & Querying
• Executable is abstracted to set of terms

• 3 strategies to deal with long queries, for desired query length lQ

• Term de-duplication, Padding and Unique term selection

• Term de-duplication (up to 2 x lQ) a simple strategy that reduces
the query size

• Padding: Include common terms prepended by NOT

• E.g. For lQ = 3, and query is A AND B, pad with A AND B AND
NOT C

• Unique term selection: Select only the terms with frequency <
dfthreshold

18

Scoring

• Default CLucene scoring function

where coord is a score factor,

C is a normalisation factor,

V(Q)·V(D) is the dot product of the weighted vectors, and

|V(Q)| is the Euclidean norm

19

What makes a good
model?

• True positives (tp): a correctly retrieved document
relevant to the query

• False positive (fp): an incorrectly retrieved irrelevant
document

• False negative (fn): a missing but relevant document

•

20

Implementation

• Disassembly: Dyninst binary instrumentation
framework (http://dyninst.org)

• Indexing & Querying: CLucene text search
engine (http://clucene.sourceforge.net)

• Term frequency map is a Bloom filter

• Code abstraction: 10,500 lines of C++

• Indexing/Querying: 1,000 lines of C++

21

http://dyninst.org
http://dyninst.org
http://clucene.sourceforge.net
http://clucene.sourceforge.net

Questions

• Optimal value of dfthreshold?

• Accuracy of various abstractions?

• Accuracy for different compilers?

• Accuracy for different compiler options?

• Timing

22

Datasets

• GNU C Library 2.16 (glibc)

- 2,706 functions, 1.18 MLoC

- Compiled with gcc -O1, -O2

• GNU coreutils 6.10 (coreutils)

- 1,205 functions, 70,000 LoC

- Compiled with gcc, clang

23

dfthreshold

24

 df
threshold

Precision Recall F2

1 0.202 0.395 0.331
2 0.177 0.587 0.401
3 0.165 0.649 0.410
4 0.161 0.677 0.413
5 0.157 0.673 0.406
6 0.160 0.702 0.418
7 0.159 0.709 0.419
8 0.157 0.708 0.415
9 0.157 0.716 0.418

10 0.155 0.712 0.414
11 0.151 0.696 0.405
12 0.152 0.702 0.408
13 0.153 0.705 0.410
1 0.151 0.709 0.408

334

n-grams vs n-perms

25

334

n n-gram n-perm
1 121 121
2 1483 306
3 6337 542
4 16584 889

334
n-grams out-performed n-perms for n > 1
Possible explanation: Unique terms

k-graphs vs ex. k-graphs

26

glibc
k-graph extended k-graph

Precision Recall F2 Precision Recall F2

3-graph 0.070 0.133 0.113 0.022 0.062 0.046
4-graph 0.436 0.652 0.593 0.231 0.398 0.348
5-graph 0.730 0.700 0.706 0.621 0.600 0.604
6-graph 0.732 0.620 0.639 0.682 0.622 0.633

7-graph 0.767 0.609 0.635 0.728 0.610 0.631
coreutils

k-graph extended k-graph
Precision Recall F2 Precision Recall F2

3-graph 0.110 0.200 0.172 0.042 0.080 0.068
4-graph 0.401 0.586 0.537 0.218 0.360 0.318
5-graph 0.643 0.623 0.627 0.553 0.531 0.535
6-graph 0.617 0.527 0.543 0.660 0.602 0.613

7-graph 0.664 0.560 0.578 0.663 0.566 0.583

335

Mixed n-grams

27

• 1+4-grams & 2+4-grams were best
performers

• Out-performed the best n-gram model
(coreutils: 0.764, glibc: 0.664)

glibc coreutils
1+2-gram 0.682 0.619
1+3-gram 0.741 0.649
1+4-gram 0.777 0.671

2+3-gram 0.737 0.655
2+4-gram 0.777 0.675

3+4-gram 0.765 0.671

335

Mixed k-graphs

28

5+7-graphs best performer for both sets

TABLE VII
RESULTS FOR MIXED k-GRAPH MODELS.

glibc coreutils
F2 F2

3+4-graphs 0.607 0.509
3+5-graphs 0.720 0.630
3+6-graphs 0.661 0.568
3+7-graphs 0.655 0.559
4+5-graphs 0.740 0.624
4+6-graphs 0.741 0.624
4+7-graphs 0.749 0.649
5+6-graphs 0.752 0.650
5+7-graphs 0.768 0.657

6+7-graphs 0.720 0.624

TABLE VIII
RESULTS OF USING DATA CONSTANTS TO IDENTIFY FUNCTIONS IN THE

glibc AND coreutils DATA SETS.

Precision Recall F2

glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

F. Data Constants
Table VIII shows the results of using the third type of

code abstraction, data constants, to match functions compiled
using different optimisations (glibc) and different compilers
(coreutils). The performance was better for coreutils at
0.772 compared to glibc at 0.681. One possible explanation
for this difference is the fact none of the functions in the
glibc had strings, whilst 889 functions, or 40.3% of functions
in the coreutils did. Also as a consequence of this, the number
of functions having more than 110 terms was higher for
coreutils—11.1% compared to only 5.3% in glibc.

G. Composite Models
Building upon the observation that mixed models were more

successful than single models, the last set of models consid-
ered were composite ones, i.e. models that combined n-grams,
k-graphs and constants. The terms from each individual model,
for example 4-grams, were abstracted then concatenated to
form a composite document for each function.

We considered two composite models for each data set. The
first composite model was made up of the highest performing
single model from each of the three categories; the second
composite model was made up of the highest performing
mixed model, except for constants. Thus, we tested the models
comprising 4-gram/5-graph/constants and 1-gram/4-gram/3-
graph/5-graph/constants for the glibc set. The corresponding
models for the coreutils set were 4-gram/5-graph/constants
and 2-gram/4-gram/5-graph/7-graph/constants. The results are
given in Table IX.

Overall, the best composite model out-performed the best
mixed models, giving an F2 score of 0.867 and 0.830 for
glibc and coreutils respectively. The highest scores for mixed
models were 0.777 (1-gram/4-gram) and 0.772 (constants).
One observation was that including more models did not

necessarily result in better performance. This was evident from
the fact that the composite models with 3 components fared
better than the model with 5.

Instead of maximising F2, we were also interested in the
recall rates when the value of r, the number of ranked results,
was 10, since we do not expect users of the search engine to
venture beyond the first page of results. Considering only the
top 10 ranked results, the recall rates were 0.925 and 0.878
respectively for glibc and coreutils.

Of the 342 false negatives from the glibc set, we found that
206 were small functions, having 6 instructions or less. Since
Rendezvous uses a statistical model to analyse executable
code, it is understandable that it has problems differentiating
between small functions.

One of the largest functions in this group was getfsent
from glibc (Figure 10). The output for gcc -O1 and gcc
-O2, or getfsentO1 and getfsentO2 respectively, dif-
fer significantly due to several factors. Firstly, the function
fstab_fetch was inlined, causing the mov and call
instructions in getfsentO1 to be expanded to 8.

Secondly, there were two instruction substitutions: instruc-
tion mov eax, 0x0 in getfsentO1 was substituted by
the xor eax, eax instruction which utilises 2 bytes instead
of 5; the call to fstab_convert was substituted by an
unconditional jump. In the latter substitution, the call was
assumed to return, whereas the jump did not. This was evident
from the fact that the stack was restored immediately prior to
the jump. This altered the control flow graph since the edge
from the jmp instruction to the final BB was no longer there
in getfsentO2.

Thirdly, there were two occurrences of instruction reorder-
ing: The first being the swapping of the second and third
instructions of both functions; the second was the swapping
of the test and mov instructions following the call to
fstab_init.

The sum of these changes resulted in the fact that there were
no 3-grams, 4-grams nor data constants in common between
the two functions, and the two 4-graphs did not match. In such
cases, the matching could benefit from a more accurate form
of analysis, such as symbolic execution [16], but this is left
to future work.

TABLE IX
RESULTS OF THE COMPOSITE MODELS. WHERE INDICATED, VARIABLE r
IS THE NUMBER OF RANKED RESULTS CONSIDERED, OTHERWISE r = 1.

Precision Recall F2

glibc 4-gram/5-graph/constants 0.870 0.866 0.867

1-gram/4-gram/5-graph/
7-graph/constants

0.850 0.841 0.843

4-gram/5-graph/constants
(r = 10)

0.118 0.925 0.390

coreutils 4-gram/5-graph/constants 0.835 0.829 0.830

2-gram/4-gram/5-graph/
7-graph/constants

0.833 0.798 0.805

4-gram/5-graph/constants
(r = 10)

0.203 0.878 0.527

336

Constants

29

Possible explanation: None of the
functions in glibc had strings, whilst
889 functions, or 40.3% of functions in
coreutils did

TABLE VII
RESULTS FOR MIXED k-GRAPH MODELS.

glibc coreutils
F2 F2

3+4-graphs 0.607 0.509
3+5-graphs 0.720 0.630
3+6-graphs 0.661 0.568
3+7-graphs 0.655 0.559
4+5-graphs 0.740 0.624
4+6-graphs 0.741 0.624
4+7-graphs 0.749 0.649
5+6-graphs 0.752 0.650
5+7-graphs 0.768 0.657

6+7-graphs 0.720 0.624

TABLE VIII
RESULTS OF USING DATA CONSTANTS TO IDENTIFY FUNCTIONS IN THE

glibc AND coreutils DATA SETS.

Precision Recall F2

glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

F. Data Constants
Table VIII shows the results of using the third type of

code abstraction, data constants, to match functions compiled
using different optimisations (glibc) and different compilers
(coreutils). The performance was better for coreutils at
0.772 compared to glibc at 0.681. One possible explanation
for this difference is the fact none of the functions in the
glibc had strings, whilst 889 functions, or 40.3% of functions
in the coreutils did. Also as a consequence of this, the number
of functions having more than 110 terms was higher for
coreutils—11.1% compared to only 5.3% in glibc.

G. Composite Models
Building upon the observation that mixed models were more

successful than single models, the last set of models consid-
ered were composite ones, i.e. models that combined n-grams,
k-graphs and constants. The terms from each individual model,
for example 4-grams, were abstracted then concatenated to
form a composite document for each function.

We considered two composite models for each data set. The
first composite model was made up of the highest performing
single model from each of the three categories; the second
composite model was made up of the highest performing
mixed model, except for constants. Thus, we tested the models
comprising 4-gram/5-graph/constants and 1-gram/4-gram/3-
graph/5-graph/constants for the glibc set. The corresponding
models for the coreutils set were 4-gram/5-graph/constants
and 2-gram/4-gram/5-graph/7-graph/constants. The results are
given in Table IX.

Overall, the best composite model out-performed the best
mixed models, giving an F2 score of 0.867 and 0.830 for
glibc and coreutils respectively. The highest scores for mixed
models were 0.777 (1-gram/4-gram) and 0.772 (constants).
One observation was that including more models did not

necessarily result in better performance. This was evident from
the fact that the composite models with 3 components fared
better than the model with 5.

Instead of maximising F2, we were also interested in the
recall rates when the value of r, the number of ranked results,
was 10, since we do not expect users of the search engine to
venture beyond the first page of results. Considering only the
top 10 ranked results, the recall rates were 0.925 and 0.878
respectively for glibc and coreutils.

Of the 342 false negatives from the glibc set, we found that
206 were small functions, having 6 instructions or less. Since
Rendezvous uses a statistical model to analyse executable
code, it is understandable that it has problems differentiating
between small functions.

One of the largest functions in this group was getfsent
from glibc (Figure 10). The output for gcc -O1 and gcc
-O2, or getfsentO1 and getfsentO2 respectively, dif-
fer significantly due to several factors. Firstly, the function
fstab_fetch was inlined, causing the mov and call
instructions in getfsentO1 to be expanded to 8.

Secondly, there were two instruction substitutions: instruc-
tion mov eax, 0x0 in getfsentO1 was substituted by
the xor eax, eax instruction which utilises 2 bytes instead
of 5; the call to fstab_convert was substituted by an
unconditional jump. In the latter substitution, the call was
assumed to return, whereas the jump did not. This was evident
from the fact that the stack was restored immediately prior to
the jump. This altered the control flow graph since the edge
from the jmp instruction to the final BB was no longer there
in getfsentO2.

Thirdly, there were two occurrences of instruction reorder-
ing: The first being the swapping of the second and third
instructions of both functions; the second was the swapping
of the test and mov instructions following the call to
fstab_init.

The sum of these changes resulted in the fact that there were
no 3-grams, 4-grams nor data constants in common between
the two functions, and the two 4-graphs did not match. In such
cases, the matching could benefit from a more accurate form
of analysis, such as symbolic execution [16], but this is left
to future work.

TABLE IX
RESULTS OF THE COMPOSITE MODELS. WHERE INDICATED, VARIABLE r
IS THE NUMBER OF RANKED RESULTS CONSIDERED, OTHERWISE r = 1.

Precision Recall F2

glibc 4-gram/5-graph/constants 0.870 0.866 0.867

1-gram/4-gram/5-graph/
7-graph/constants

0.850 0.841 0.843

4-gram/5-graph/constants
(r = 10)

0.118 0.925 0.390

coreutils 4-gram/5-graph/constants 0.835 0.829 0.830

2-gram/4-gram/5-graph/
7-graph/constants

0.833 0.798 0.805

4-gram/5-graph/constants
(r = 10)

0.203 0.878 0.527

336

Composite models

30

• More components not necessarily better

• Looked at recall rates for top 10 results

TABLE VII
RESULTS FOR MIXED k-GRAPH MODELS.

glibc coreutils
F2 F2

3+4-graphs 0.607 0.509
3+5-graphs 0.720 0.630
3+6-graphs 0.661 0.568
3+7-graphs 0.655 0.559
4+5-graphs 0.740 0.624
4+6-graphs 0.741 0.624
4+7-graphs 0.749 0.649
5+6-graphs 0.752 0.650
5+7-graphs 0.768 0.657

6+7-graphs 0.720 0.624

TABLE VIII
RESULTS OF USING DATA CONSTANTS TO IDENTIFY FUNCTIONS IN THE

glibc AND coreutils DATA SETS.

Precision Recall F2

glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

F. Data Constants
Table VIII shows the results of using the third type of

code abstraction, data constants, to match functions compiled
using different optimisations (glibc) and different compilers
(coreutils). The performance was better for coreutils at
0.772 compared to glibc at 0.681. One possible explanation
for this difference is the fact none of the functions in the
glibc had strings, whilst 889 functions, or 40.3% of functions
in the coreutils did. Also as a consequence of this, the number
of functions having more than 110 terms was higher for
coreutils—11.1% compared to only 5.3% in glibc.

G. Composite Models
Building upon the observation that mixed models were more

successful than single models, the last set of models consid-
ered were composite ones, i.e. models that combined n-grams,
k-graphs and constants. The terms from each individual model,
for example 4-grams, were abstracted then concatenated to
form a composite document for each function.

We considered two composite models for each data set. The
first composite model was made up of the highest performing
single model from each of the three categories; the second
composite model was made up of the highest performing
mixed model, except for constants. Thus, we tested the models
comprising 4-gram/5-graph/constants and 1-gram/4-gram/3-
graph/5-graph/constants for the glibc set. The corresponding
models for the coreutils set were 4-gram/5-graph/constants
and 2-gram/4-gram/5-graph/7-graph/constants. The results are
given in Table IX.

Overall, the best composite model out-performed the best
mixed models, giving an F2 score of 0.867 and 0.830 for
glibc and coreutils respectively. The highest scores for mixed
models were 0.777 (1-gram/4-gram) and 0.772 (constants).
One observation was that including more models did not

necessarily result in better performance. This was evident from
the fact that the composite models with 3 components fared
better than the model with 5.

Instead of maximising F2, we were also interested in the
recall rates when the value of r, the number of ranked results,
was 10, since we do not expect users of the search engine to
venture beyond the first page of results. Considering only the
top 10 ranked results, the recall rates were 0.925 and 0.878
respectively for glibc and coreutils.

Of the 342 false negatives from the glibc set, we found that
206 were small functions, having 6 instructions or less. Since
Rendezvous uses a statistical model to analyse executable
code, it is understandable that it has problems differentiating
between small functions.

One of the largest functions in this group was getfsent
from glibc (Figure 10). The output for gcc -O1 and gcc
-O2, or getfsentO1 and getfsentO2 respectively, dif-
fer significantly due to several factors. Firstly, the function
fstab_fetch was inlined, causing the mov and call
instructions in getfsentO1 to be expanded to 8.

Secondly, there were two instruction substitutions: instruc-
tion mov eax, 0x0 in getfsentO1 was substituted by
the xor eax, eax instruction which utilises 2 bytes instead
of 5; the call to fstab_convert was substituted by an
unconditional jump. In the latter substitution, the call was
assumed to return, whereas the jump did not. This was evident
from the fact that the stack was restored immediately prior to
the jump. This altered the control flow graph since the edge
from the jmp instruction to the final BB was no longer there
in getfsentO2.

Thirdly, there were two occurrences of instruction reorder-
ing: The first being the swapping of the second and third
instructions of both functions; the second was the swapping
of the test and mov instructions following the call to
fstab_init.

The sum of these changes resulted in the fact that there were
no 3-grams, 4-grams nor data constants in common between
the two functions, and the two 4-graphs did not match. In such
cases, the matching could benefit from a more accurate form
of analysis, such as symbolic execution [16], but this is left
to future work.

TABLE IX
RESULTS OF THE COMPOSITE MODELS. WHERE INDICATED, VARIABLE r
IS THE NUMBER OF RANKED RESULTS CONSIDERED, OTHERWISE r = 1.

Precision Recall F2

glibc 4-gram/5-graph/constants 0.870 0.866 0.867

1-gram/4-gram/5-graph/
7-graph/constants

0.850 0.841 0.843

4-gram/5-graph/constants
(r = 10)

0.118 0.925 0.390

coreutils 4-gram/5-graph/constants 0.835 0.829 0.830

2-gram/4-gram/5-graph/
7-graph/constants

0.833 0.798 0.805

4-gram/5-graph/constants
(r = 10)

0.203 0.878 0.527

336

Results at a glance

31

False negatives

32

• 342 from glibc: 206 had 6 instructions or less

• getfsent

- In-lining of fstab_convert

- Instruction substitution: xor ax, ax to mov ax, 0;
call/leave/ret to leave/jmp

- Instruction re-ordering

- No n-grams, k-graphs, constants in common

Timing

33

• Timing for 2,410 coreutils functions

• 0.407s per function in worst case

• Constants extraction can be streamlined further

struct fstab *getfsent(void){
struct fstab_state *state;
state = fstab_init(0);

if(state == NULL)
return NULL;

if(fstab_fetch(state) == NULL)
return NULL;

return fstab_convert(state);
}

Fig. 10. Source code of getfsent

TABLE X
AVERAGE AND WORST-CASE TIMINGS FOR coreutils SET.

Average (s) Worst (s)

Abstraction

n-gram 46.684 51.881
k-graph 110.874 114.922
constants 627.656 680.148
null 11.013 15.135

Query construction 6.133 16.125
Query 116.101 118.005

Total (2410 functions) 907.448 981.081
Total per function 0.377 0.407

H. Timing
The final set of experiments was conducted to determine

the time taken for a binary program to be disassembled, for
the terms to be abstracted and for the query to return with the
search results. We timed the coreutils set for this experiment,
and included both the gcc-compiled code and the clang-
compiled code to give a total of 2410 functions. Table X shows
the average case as well as the worst-case timings for each
individual phase. The “null” row indicates the time taken for
Dyninst to complete the disassembly without performing any
further abstraction. The total time was computed by summing
the time taken by the three abstractions. Strictly speaking, our
time is an overestimate since the binary was disassembled two
more times than was necessary in practice. On the other hand,
we did not do end-to-end timings to take into consideration
the computational time required for the front-end system, so
the timings are an approximation at best.

We found that a significant portion of time was spent
in extracting constants from the disassembly. The reason is
because the procedure is currently made up of several different
tools and scripts, and we hope to streamline this procedure in
future.

XI. DISCUSSION

A. Limitations
An important assumption made in this paper is that the bi-

nary code in question is not actively obfuscated. The presence
of code packing, encryption or self-modifying code would
make disassembly, and therefore code abstraction, difficult to
perform. In practice, Rendezvous may require additional tech-
niques, such as dynamic code instrumentation and symbolic

execution, to analyse heavily obfuscated executables. How-
ever, as mentioned, we considered static analysis primarily
for its efficiency. In future we hope to look at efficient ways
to include dynamic methods in Rendezvous.

B. Threats to Validity
Threats to internal validity include the limited software

tested, and limited number of compilers and compiler opti-
misation levels used. The good performance may be due to
a limited sample size of software analysed, and future work
will involve analysing larger code bases. It is possible that the
gcc and clang compilers naturally produce similar binary
code. Likewise, the output of gcc -O1 and gcc -O2 could
be naturally similar.

The most important threat to external validity is the as-
sumption that there is no active code obfuscation involved
in producing the code under consideration. Code obfuscation,
such as the use of code packing and encryption, may be
common in actual binary code in order to reduce code size
or to prevent reverse engineering and modification. Such
techniques may increase the difficulty of disassembly and
identification of function boundaries.

XII. RELATED WORK

The line of work that is most closely related to ours is
that of binary clone detection. Sæbjørnsen et al. [17] worked
on detecting “copied and pasted” code in Windows XP bi-
naries and the Linux kernel by constructing and comparing
vectors of features comprising instruction mnemonics, exact
and normalised operands located within a set of windows in
the code segment. The main goal was to find large code clones
within the same code base using a single compiler and hence
their method did not need to address issues with multiple
compilers and their optimisations. In contrast, since the goal
of Rendezvous is to do binary clone matching across different
code bases, we needed to address the compiler optimisation
problem and we believe our technique to be sufficiently
accurate to be successful. Hemel et al. [18] looked purely at
strings in the binary to uncover code violating the GNU public
license. The advantage of their technique was that it eliminated
the need to perform disassembly. However, as our experiments
show, using only string constants we were only able to identify
between 60 to 70% of functions. Other approaches include
directed acyclic graphs [9], program dependence graphs [19]
and program expression graphs [20]. We did not consider these
approaches as the computational costs of these techniques are
higher than what Rendezvous currently uses.

A closely related area is source code clone detection and
search, and techniques may be divided into string-based,
token-based, tree-based and semantics-based methods [21].
Examples include CCFinder [22], CP-Miner [23], MUD-
ABlue [24], CLAN [25] and XIAO [26]. Rendezvous, how-
ever, is targeted at locating code in binary form, but borrows
some inspiration from the token-based approach.

A related field is malware analysis and detection, whose
goal is to classify a binary as being malicious, or belonging

337

Conclusion

• Software RE is tedious, expertise required

• Code reuse is common in software

• We propose reframing: software RE as a
search problem

• Able to achieve F2 rates of 0.867 & 0.830
combining mnemonics, k-graphs and constants

http://www.rendezvousalpha.com

34

http://www.rendezvousalpha.com
http://www.rendezvousalpha.com

