
The Programming Game
An Alternative to GP for Expression Search

DAASE/COW Open Workshop
Tuesday 23rd April 2013

David R White
SICSA Research Fellow · University of Glasgow

A Confession

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

Observation

“There have been exciting recent breakthroughs in the
use of genetic programming to re-design aspects of
systems to fix bugs, to migrate to new platforms and
languages and to optimise non-functional properties.”

Harman et al.,
Dynamic Adaptive Search Based Software Engineering,

ESEM 2012.

Genetic Programming as a Hyper-Heuristic

The Demands of DAASE

I Dynamic, online, run-time optimisation.

I Continuous adaptation.

Anytime Algorithms

Evolutionary Algorithms are often viewed as anytime algorithms:

Time

Quality

Algorithm 1

Algorithm 2

. . . but I would argue that they are somewhat imperfect anytime
algorithms. Especially GP.

Anytime Algorithms

Evolutionary Algorithms are often viewed as anytime algorithms:

Time

Quality

Algorithm 1

Algorithm 2

. . . but I would argue that they are somewhat imperfect anytime
algorithms. Especially GP.

Why GP is not so Anytime

I Bloat

I Parameter Setting

I Difficulty of Allocating Computational Budget

I Notions of Progress and Coverage

How well do we understand a GP search? How can we hope to
control it? (“Insight”)

Why GP is not so Anytime

I Bloat

I Parameter Setting

I Difficulty of Allocating Computational Budget

I Notions of Progress and Coverage

How well do we understand a GP search? How can we hope to
control it? (“Insight”)

Steal from Artificial Intelligence Research

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

Monte Carlo Tree Search

Game Tree

Sampling

29 possible moves for White here.

Programming is a One-Player Game

Tristan Cazenave’s Work

Nested Monte-Carlo Expression Discovery, Cazenave,
ECAI 2010.

Monte-Carlo Expression Discovery, International Journal on
Artificial Intelligence Tools, Cazenave, 22 (1) 2013.

A Stack Machine

+ * a bsqrt
{ +, *, -, /}
{a, b}

root

Each atom added is a move through the game tree.

Stack using Reverse Polish notation.
atoms

Building the Game Tree

1. Selection

2. Expansion

3. Sampling

4. Update

Python Implementation

def uct (max eva l s , terms , nonterms , ucb cons tan t , max nodes , s c o r e f) :
r o o t = TreeNode (None , terms , nonterms , None , ucb cons tan t , 1 , 0 , max nodes)
f o r i i n x range (max eva l s) :

i f r o o t . e x p l o r e d :
break

s t a c k = Exp r e s s i o nS t a c k (max nodes)
l e a f = t r e e p o l i c y (root , terms , nonterms , ucb cons tan t , s tack , max nodes)
s c o r e = p l a you t (s tack , terms , nonterms , s c o r e f)
backup (l e a f , s c o r e)

r e t u r n r o o t

def t r e e p o l i c y (node , terms , nonterms , ucb cons tan t , s tack , max nodes) :
wh i l e s t a c k . l e a v e s > 0 :

i f not node . a l l a t om s t r i e d () :
n ew ch i l d = expand (node , s tack , terms , nonterms , ucb cons tan t , max nodes)
s t a c k . push (n ew ch i l d . node atom)
i f s t a c k . l e a v e s == 0 :

n ew ch i l d . e x p l o r e d = True
n ew ch i l d . p o s s i b l e a t om s = []

r e t u r n new ch i l d
e l s e :

node = b e s t c h i l d (node)
s t a c k . push (node . node atom)

r e t u r n node

Python Implementation (Cont.)

def expand (node , s tack , terms , nonterms , ucb cons tan t , e x p r s i z e , max nodes) :
atom = node . next atom ()
e l e a v e s = s t a ck . l e a v e s + atom . a r i t y − 1
e s i z e = l e n (s t a c k . e x p r e s s i o n)+1
c = TreeNode (atom , terms , nonterms , node , ucb cons tan t , e l e a v e s , e s i z e , max nodes)
node . a d d c h i l d (c)
r e t u r n c

def backup (node , s c o r e) :
wh i l e node i s not None :

node . v i s i t s = node . v i s i t s + 1
node . sum sco r e s = node . sum sco r e s + s c o r e
i f node . a l l a t om s t r i e d () :

done = True
f o r c i n node . c h i l d r e n :

done = done and c . e x p l o r e d
node . e x p l o r e d = done

node = node . pa r en t

A Simple Example

Symbolic regression with the language {+, ∗, a, b}.

Example Game Tree Construction

[null] [null], 1, 0.1

[+], 1, 0.1+

a b

score = 0.1

[+], 1, 0.1

+ [*], 1, 0.3

a a

*

score = 0.3

[null], 2, 0.4

[+], 1, 0.1

+

[*], 1, 0.3

[null], 4, 0.5

* a

score = 0

b

[+], 1, 0.1

+

[*], 1, 0.3

[null], 3, 0.5

* a

score = 0.1

[a], 1, 0.1

[a], 1, 0.1

[+], 1, 0.1

+

[*], 2, 0.8

[null], 3, 0.5

* a b

[a], 1, 0.1

[*,+], 1, 0.5
+

a b

score = 0.5

b

[null], 5, 1.0

[b], 1, 0.1

[b], 1, 0.1

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6

Balancing Exploration and Exploitation

Choose child with highest UCT score.

Sc

nc
+ K

√
2 ln nc

np

Sc total score for playouts involving this node.
nc number of visits to this node.
np number of visits to the parent of this node.
K constant

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

The Target Problem

Find an equation using the numbers {1 . . . 10} exactly once and
the arithmetic operators +,-,/,* so that the result is as close to
737 as possible.

Target Problem: Results

o o o o o o o o o o

o

o
o

o

o

o

o
o o o

1e+01 1e+03 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing Median Best Fitness on the Target Problem

Evaluations (log scale)

F
itn

es
s

S
co

re

+ + + + + + + + + + +

+

+
+

+

+

+

+
+ +

x x x x x x x x x x x x x x x x x

x
x

x

o
+
x

GP
Nested
UCT

Prime Generation

Find an equation that generates unique prime numbers when fed
with the natural numbers as input.

The function set is +,-,*,/ and the terminal set is {1 . . . 10} and
all the prime numbers under 100.

Prime Problem: Results

o o o o o o o o o o o o o o o o o o o o

1e+01 1e+03 1e+05

0
10

20
30

40
50

Comparing Median Best Fitness on the Prime Problem

Evaluations (log scale)

F
itn

es
s

S
co

re

+ + + + + + + + + + + + + +

+

+

+ + + +

x x x x x x x x x x x x x x
x x x x x

x

o
+
x

GP
Nested
UCT

Advantages of MCTS

Concise Solutions.

Game Tree is Human-Readable.

Parallelisation.

Relevant Previous Work

Real-time Games
UCT for Tactical Assault Planning in Real-Time Strategy Games,
Balla and Fern, ICAI 2009.

Scheduling Problems
Monte-Carlo Tree Search in Production Management Problems,
Chaslot et al., Benelux Conference on AI, 2006.
(includes a comparison to EAs)

Feature Selection
Feature Selection as a One-Player Game, Gaudel and Sebag,
ML 2010.

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

What next?

A better paper!

Further adapting MCTS for program search.
e.g. use of grammars to introduce typing.

Application to challenging problems.

Acknowledgements

Juan E. Tapiador

Tristan Cazenave

Further Reading

Highly recommended:

A Survey of Monte Carlo Tree Search Methods, Browne et al.,
IEEE Trans. on Computational Intelligence and AI in Games, 2012.

	DAASE and Genetic Programming
	An Alternative Program Search Method
	Two Experiments
	Wrap-Up

