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DAASE and Genetic Programming



Observation

“There have been exciting recent breakthroughs in the
use of genetic programming to re-design aspects of
systems to fix bugs, to migrate to new platforms and
languages and to optimise non-functional properties.”

Harman et al.,
Dynamic Adaptive Search Based Software Engineering,
ESEM 2012.



Genetic Programming as a Hyper-Heuristic
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Abstract Hyper-heuristics represent a novel search methodology that is motivated

by the goal of automating the process of selecting o combining simpler heuristics

in order to solve hard computational search problems. An extension of the original

hyper-heuristic idea is to generate new heuristics which are not currently known.
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The Demands of DAASE

» Dynamic, online, run-time optimisation.

» Continuous adaptation.



Anytime Algorithms
Evolutionary Algorithms are often viewed as anytime algorithms:
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Anytime Algorithms
Evolutionary Algorithms are often viewed as anytime algorithms:
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... but | would argue that they are somewhat imperfect anytime

algorithms. Especially GP.



Why GP is not so Anytime
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Why GP is not so Anytime

» Bloat

» Parameter Setting

» Difficulty of Allocating Computational Budget
» Notions of Progress and Coverage

How well do we understand a GP search? How can we hope to
control it? (“Insight”)



Steal from Artificial Intelligence Research
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An Alternative Program Search Method



Monte Carlo Tree Search




Game Tree

1. The fust mova by O 2. Possibla spcond mowes by O 5. Possbia third moves by O
2. Possbly st maves by X 4. Possible socand moves by X 8. Possibia itird moves by K



Sampling
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29 possible moves for White here.



Programming is a One-Player Game




Tristan Cazenave's Work

Nested Monte-Carlo Expression Discovery, Cazenave,
ECAI 2010.

Monte-Carlo Expression Discovery, International Journal on
Artificial Intelligence Tools, Cazenave, 22 (1) 2013.



A Stack Machine

Stack using Reverse Polish notation.
atoms

{+. % -/}
{a, b}

Each atom added is a move through the game tree.

oot | + [ x| a|sqrt|b




Building the Game Tree

. Selection
. Expansion
. Sampling
. Update

A W =



Python Implementation

def uct(max_evals, terms, h nonterms,ucb_constant,max_nodes, scoref):

root = TreeNode(None, terms ,nonterms ,None,ucb_constant ,1,0, max_nodes)
for i in xrange (max.evals):
if root.explored:
break
stack = ExpressionStack (max_nodes)
leaf = tree_policy(root,terms, nonterms,ucb_constant, stack,max_nodes)
score = playout(stack,terms, nonterms, scoref)

backup(leaf ,score)
return root

def tree_policy(node,terms,nonterms,ucb_constant, stack,max_nodes):
while stack.leaves > 0:
if not node.all_atoms_tried ():

new_child = expand(node,stack ,terms, 6 nonterms, ucb_constant, max_nodes)
stack.push(new_child.node_atom)
if stack.leaves = 0:
new_child . explored = True
new_child . possible_atoms = []
return new_child
else:

node = best_child (node)
stack.push(node.node_atom)
return node




Python Implementation (Cont.)

def expand(node,stack , terms,h nonterms, ucb_constant,expr_size ,max_nodes):

atom = node.next_atom ()
e_leaves = stack.leaves + atom.arity — 1

e_size = len(stack.expression)+1
¢ = TreeNode(atom, terms , nonterms , node,ucb_constant ,e_leaves ,e_size ,max_nodes)

node.add_child (c)
return c

def backup(node,score):
while node is not None:
node. visits = node.visits + 1
node.sum_scores node.sum_scores + score
if node.all_atoms_tried ():
done = True
for c in node.children:
done = done and c.explored

node.explored = done

node = node. parent




A Simple Example

Symbolic regression with the language {+, *,a,b}.



Example Game Tree Construction

Step 1 Step 2 Step 3 Step 4
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Balancing Exploration and Exploitation

Choose child with highest UCT score.

Sc

2 In n.

+ K

Ne np

Sc total score for playouts involving this node.
ne number of visits to this node.

np number of visits to the parent of this node.
K constant



Two Experiments



The Target Problem

Find an equation using the numbers {1...10} exactly once and
the arithmetic operators +,-,/,* so that the result is as close to
737 as possible.



Target Problem: Results

Comparing Median Best Fitness on the Target Problem
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Prime Generation

Find an equation that generates unique prime numbers when fed
with the natural numbers as input.

The function set is +,-,*,/ and the terminal set is {1...10} and
all the prime numbers under 100.



Prime Problem: Results

Fitness Score
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Advantages of MCTS

Concise Solutions.

Game Tree is Human-Readable.

Parallelisation.



Relevant Previous Work

Real-time Games
UCT for Tactical Assault Planning in Real-Time Strategy Games,
Balla and Fern, ICAI 2009.

Scheduling Problems

Monte-Carlo Tree Search in Production Management Problems,
Chaslot et al., Benelux Conference on Al, 2006.

(includes a comparison to EAs)

Feature Selection
Feature Selection as a One-Player Game, Gaudel and Sebag,
ML 2010.



Wrap-Up



What next?

A better paper!

Further adapting MCTS for program search.
e.g. use of grammars to introduce typing.

Application to challenging problems.
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Further Reading

Highly recommended:

A Survey of Monte Carlo Tree Search Methods, Browne et al.,
IEEE Trans. on Computational Intelligence and Al in Games, 2012.
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