The Programming Game

An Alternative to GP for Expression Search

DAASE/COW Open Workshop
Tuesday 23rd April 2013

David R White
SICSA Research Fellow - University of Glasgow

A Confession

DAASE and Genetic Programming

An Alternative Program Search Method

Two Experiments

Wrap-Up

DAASE and Genetic Programming

Observation

“There have been exciting recent breakthroughs in the
use of genetic programming to re-design aspects of
systems to fix bugs, to migrate to new platforms and
languages and to optimise non-functional properties.”

Harman et al.,
Dynamic Adaptive Search Based Software Engineering,
ESEM 2012.

Genetic Programming as a Hyper-Heuristic

School of Computer Science and Information Technology
University of Notting!
Jubilee C: s
NOTTINGHAM NG8 1BB, UK

Cor S Technical R . s . =
mpser Seinee fesimesl ¥ Exploring Hyper-heuristic Methodologies with
A Genetic Programming Hyper-tn CvéNI€tiC Programming
Edmund Burke,
Graham Kgmja[]a,: Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and John R. Woodward®

© Copyright 2008 Edmund Burke, Matthew: Hyde, Gribar

Abstract Hyper-heuristics represent a novel search methodology that is motivated

by the goal of automating the process of selecting o combining simpler heuristics

in order to solve hard computational search problems. An extension of the original

hyper-heuristic idea is to generate new heuristics which are not currently known.

These approaches operate on a search spuce of heuristics rather than directly on 1

«:mh space of solutions to the underlying problem whmh s the case with most
In the majorit of b i

framework is provided with a set of human de s 5 TRANSACTIONS 08 EYOLLTIONARY COMPUATON. 0L 14,506, SR 510

erature, and with good measures of performan

proach aims o generate ne heuristics froma: - A Genetic Programming Hyper-Heuristic Approach

The purposc of this chapter is to discuss this < N h OF

Genetic Programming is the most widely uscd for Evolving 2-D Strip Packing Heuristics

s presented including the steps needed to ap) Edmund K. Burke, Member, IEEE, Matthew Hyde, Member, IEEE, Graham Kendall, Member, IEEE, and

ve case studies, a literature review of relatec o Woodward

issues. Our aim is to convey the exciting pote

automating the heuristic design process.

amdins <o far a

bt preeat o G system 0
The

"
edge furthest from the base. This proble s kaown 0 be NP.
(oo deerminisic, polynomil-e) had 2], s bas many
are many sitiations where
tangles of Giffeent sizes mst be cut from a shet
of masial (o el i o el whls miimisiog

" Indeed, many industial problems are ot lmited o just

acsign
e are e pood 4 ey ot i Bt i o vl e kb) resns
o sluton meth e et o Tnober haloging eblem 1), Thrs e many oo

sions. A typology of these problems i presented by Wascher
eral. in [4), As well as their dimensionality, the problems are

The Demands of DAASE

» Dynamic, online, run-time optimisation.

» Continuous adaptation.

Anytime Algorithms
Evolutionary Algorithms are often viewed as anytime algorithms:

Quality A
Algori ——"77
gorithm 1/ -
e
/
/
/
/
/
/
//
i " Algorithm 2
/ d
/
|
|
l ’
Time

Anytime Algorithms
Evolutionary Algorithms are often viewed as anytime algorithms:

Quality A
Al ithm 1 ——7
gori m// -
S]
/
/
/
/
/
/
i " Algorithm 2
/ d
|
|
|
| ’
Time

... but | would argue that they are somewhat imperfect anytime

algorithms. Especially GP.

Why GP is not so Anytime

Bloat

Parameter Setting

v

v

v

Difficulty of Allocating Computational Budget

v

Notions of Progress and Coverage

Why GP is not so Anytime

» Bloat

» Parameter Setting

» Difficulty of Allocating Computational Budget
» Notions of Progress and Coverage

How well do we understand a GP search? How can we hope to
control it? (“Insight”)

Steal from Artificial Intelligence Research

DPEGRADE

STEAL Frem | STEAL FRoM
MANY ONE

CREDIT | PLAGIARIZE
TRANSFoRM | JMITATE
RIP OFF

STTALLIKENARTI. com

An Alternative Program Search Method

Monte Carlo Tree Search

Game Tree

1. The fust mova by O 2. Possibla spcond mowes by O 5. Possbia third moves by O
2. Possbly st maves by X 4. Possible socand moves by X 8. Possibia itird moves by K

Sampling

(1 k1

ﬂ L] ll (l
M- [] []- KR
B N .

 BICK ¢« B4 |
E1: |1 .m
FI' Il BA-L

SCIOR O - |

29 possible moves for White here.

Programming is a One-Player Game

Tristan Cazenave's Work

Nested Monte-Carlo Expression Discovery, Cazenave,
ECAI 2010.

Monte-Carlo Expression Discovery, International Journal on
Artificial Intelligence Tools, Cazenave, 22 (1) 2013.

A Stack Machine

Stack using Reverse Polish notation.
atoms

{+. % -/}
{a, b}

Each atom added is a move through the game tree.

oot | + [x| a|sqrt|b

Building the Game Tree

. Selection
. Expansion
. Sampling
. Update

A W =

Python Implementation

def uct(max_evals, terms, h nonterms,ucb_constant,max_nodes, scoref):

root = TreeNode(None, terms ,nonterms ,None,ucb_constant ,1,0, max_nodes)
for i in xrange (max.evals):
if root.explored:
break
stack = ExpressionStack (max_nodes)
leaf = tree_policy(root,terms, nonterms,ucb_constant, stack,max_nodes)
score = playout(stack,terms, nonterms, scoref)

backup(leaf ,score)
return root

def tree_policy(node,terms,nonterms,ucb_constant, stack,max_nodes):
while stack.leaves > 0:
if not node.all_atoms_tried ():

new_child = expand(node,stack ,terms, 6 nonterms, ucb_constant, max_nodes)
stack.push(new_child.node_atom)
if stack.leaves = 0:
new_child . explored = True
new_child . possible_atoms = []
return new_child
else:

node = best_child (node)
stack.push(node.node_atom)
return node

Python Implementation (Cont.)

def expand(node,stack , terms,h nonterms, ucb_constant,expr_size ,max_nodes):

atom = node.next_atom ()
e_leaves = stack.leaves + atom.arity — 1

e_size = len(stack.expression)+1
¢ = TreeNode(atom, terms , nonterms , node,ucb_constant ,e_leaves ,e_size ,max_nodes)

node.add_child (c)
return c

def backup(node,score):
while node is not None:
node. visits = node.visits + 1
node.sum_scores node.sum_scores + score
if node.all_atoms_tried ():
done = True
for c in node.children:
done = done and c.explored

node.explored = done

node = node. parent

A Simple Example

Symbolic regression with the language {+, *,a,b}.

Example Game Tree Construction

Step 1 Step 2 Step 3 Step 4

@ nuil], 1, 0.1 null], 2, 0.4 [nulll, 3, 0.5
[+],1,0.1
[+],1,01 [*],1,0.3

[a],1,0.1

[+],1,0. 1 [*1,1,03
° o score = 0.1
[null], 3, 0.5
score = 0.1 score = 0.3
Step 5 Step 6

[null], 5, 1.0

[null], 4, 0.5

[+],1,0.1 [b], 1,0.1
[b], 1,0.1

. [al 1,01

score = 0.5

[*1,1,03 f[a], 1,01 score = 0 [*],2,0.8

1%+1,1,05 §

Balancing Exploration and Exploitation

Choose child with highest UCT score.

Sc

2 In n.

+ K

Ne np

Sc total score for playouts involving this node.
ne number of visits to this node.

np number of visits to the parent of this node.
K constant

Two Experiments

The Target Problem

Find an equation using the numbers {1...10} exactly once and
the arithmetic operators +,-,/,* so that the result is as close to
737 as possible.

Target Problem: Results

Comparing Median Best Fitness on the Target Problem

e
- o
o GP R
+ Nested
X UCT +
o
@
o
0o +
‘Da
L o
3 o
a
@
@
[
2
T o« +
o
o
"
+ X
N
° o
+
QS e e e®eee e 8@ x X XXXXX

T T T
le+01 1le+03 le+05

Evaluations (log scale)

Prime Generation

Find an equation that generates unique prime numbers when fed
with the natural numbers as input.

The function set is +,-,*,/ and the terminal set is {1...10} and
all the prime numbers under 100.

Prime Problem: Results

Fitness Score

50

40

30

20

10

Comparing Median Best Fitness on the Prime Problem

o GP
+ Nested
X UCT

+ o+ o+ o+

+ X X X
kb oxox X
g®®® @ 88 00000000000O0O0O0
T T T
le+01 1le+03 le+05

Evaluations (log scale)

Advantages of MCTS

Concise Solutions.

Game Tree is Human-Readable.

Parallelisation.

Relevant Previous Work

Real-time Games
UCT for Tactical Assault Planning in Real-Time Strategy Games,
Balla and Fern, ICAI 2009.

Scheduling Problems

Monte-Carlo Tree Search in Production Management Problems,
Chaslot et al., Benelux Conference on Al, 2006.

(includes a comparison to EAs)

Feature Selection
Feature Selection as a One-Player Game, Gaudel and Sebag,
ML 2010.

Wrap-Up

What next?

A better paper!

Further adapting MCTS for program search.
e.g. use of grammars to introduce typing.

Application to challenging problems.

Acknowledgements

Tristan Cazenave

] S
= e

Juan E. Tapiador

Further Reading

Highly recommended:

A Survey of Monte Carlo Tree Search Methods, Browne et al.,
IEEE Trans. on Computational Intelligence and Al in Games, 2012.

	DAASE and Genetic Programming
	An Alternative Program Search Method
	Two Experiments
	Wrap-Up

