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Observation

“There have been exciting recent breakthroughs in the
use of genetic programming to re-design aspects of
systems to fix bugs, to migrate to new platforms and
languages and to optimise non-functional properties.”

Harman et al.,
Dynamic Adaptive Search Based Software Engineering,

ESEM 2012.



Genetic Programming as a Hyper-Heuristic



The Demands of DAASE

I Dynamic, online, run-time optimisation.

I Continuous adaptation.



Anytime Algorithms

Evolutionary Algorithms are often viewed as anytime algorithms:

Time
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. . . but I would argue that they are somewhat imperfect anytime
algorithms. Especially GP.
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Why GP is not so Anytime

I Bloat

I Parameter Setting

I Difficulty of Allocating Computational Budget

I Notions of Progress and Coverage

How well do we understand a GP search? How can we hope to
control it? (“Insight”)
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Steal from Artificial Intelligence Research
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Monte Carlo Tree Search



Game Tree



Sampling

29 possible moves for White here.



Programming is a One-Player Game



Tristan Cazenave’s Work

Nested Monte-Carlo Expression Discovery, Cazenave,
ECAI 2010.

Monte-Carlo Expression Discovery, International Journal on
Artificial Intelligence Tools, Cazenave, 22 (1) 2013.



A Stack Machine

+ * a bsqrt
{ +, *, -, /}
{a, b}

root 

Each atom added is a move through the game tree.

Stack using Reverse Polish notation.
atoms



Building the Game Tree

1. Selection

2. Expansion

3. Sampling

4. Update



Python Implementation

def uct ( max eva l s , terms , nonterms , ucb cons tan t , max nodes , s c o r e f ) :
r o o t = TreeNode (None , terms , nonterms , None , ucb cons tan t , 1 , 0 , max nodes )
f o r i i n x range ( max eva l s ) :

i f r o o t . e x p l o r e d :
break

s t a c k = Exp r e s s i o nS t a c k ( max nodes )
l e a f = t r e e p o l i c y ( root , terms , nonterms , ucb cons tan t , s tack , max nodes )
s c o r e = p l a you t ( s tack , terms , nonterms , s c o r e f )
backup ( l e a f , s c o r e )

r e t u r n r o o t

def t r e e p o l i c y ( node , terms , nonterms , ucb cons tan t , s tack , max nodes ) :
wh i l e s t a c k . l e a v e s > 0 :

i f not node . a l l a t om s t r i e d ( ) :
n ew ch i l d = expand ( node , s tack , terms , nonterms , ucb cons tan t , max nodes )
s t a c k . push ( n ew ch i l d . node atom )
i f s t a c k . l e a v e s == 0 :

n ew ch i l d . e x p l o r e d = True
n ew ch i l d . p o s s i b l e a t om s = [ ]

r e t u r n new ch i l d
e l s e :

node = b e s t c h i l d ( node )
s t a c k . push ( node . node atom )

r e t u r n node



Python Implementation (Cont.)

def expand ( node , s tack , terms , nonterms , ucb cons tan t , e x p r s i z e , max nodes ) :
atom = node . next atom ( )
e l e a v e s = s t a ck . l e a v e s + atom . a r i t y − 1
e s i z e = l e n ( s t a c k . e x p r e s s i o n )+1
c = TreeNode ( atom , terms , nonterms , node , ucb cons tan t , e l e a v e s , e s i z e , max nodes )
node . a d d c h i l d ( c )
r e t u r n c

def backup ( node , s c o r e ) :
wh i l e node i s not None :

node . v i s i t s = node . v i s i t s + 1
node . sum sco r e s = node . sum sco r e s + s c o r e
i f node . a l l a t om s t r i e d ( ) :

done = True
f o r c i n node . c h i l d r e n :

done = done and c . e x p l o r e d
node . e x p l o r e d = done

node = node . pa r en t



A Simple Example

Symbolic regression with the language {+, ∗, a, b}.



Example Game Tree Construction

[null] [null], 1, 0.1

[+], 1, 0.1+

a b

score = 0.1

[+], 1, 0.1

+ [*], 1, 0.3

a a

*

score = 0.3

[null], 2, 0.4

[+], 1, 0.1

+

[*], 1, 0.3

[null], 4, 0.5

* a

score = 0

b

[+], 1, 0.1

+

[*], 1, 0.3

[null], 3, 0.5

* a

score = 0.1

[a], 1, 0.1

[a], 1, 0.1

[+], 1, 0.1

+

[*], 2, 0.8

[null], 3, 0.5

* a b

[a], 1, 0.1

[*,+], 1, 0.5
+

a b

score = 0.5

b

[null], 5, 1.0

[b], 1, 0.1

[b], 1, 0.1

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6



Balancing Exploration and Exploitation

Choose child with highest UCT score.

Sc

nc
+ K

√
2 ln nc

np

Sc total score for playouts involving this node.
nc number of visits to this node.
np number of visits to the parent of this node.
K constant
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The Target Problem

Find an equation using the numbers {1 . . . 10} exactly once and
the arithmetic operators +,-,/,* so that the result is as close to
737 as possible.



Target Problem: Results
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Prime Generation

Find an equation that generates unique prime numbers when fed
with the natural numbers as input.

The function set is +,-,*,/ and the terminal set is {1 . . . 10} and
all the prime numbers under 100.



Prime Problem: Results
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Advantages of MCTS

Concise Solutions.

Game Tree is Human-Readable.

Parallelisation.



Relevant Previous Work

Real-time Games
UCT for Tactical Assault Planning in Real-Time Strategy Games,
Balla and Fern, ICAI 2009.

Scheduling Problems
Monte-Carlo Tree Search in Production Management Problems,
Chaslot et al., Benelux Conference on AI, 2006.
(includes a comparison to EAs)

Feature Selection
Feature Selection as a One-Player Game, Gaudel and Sebag,
ML 2010.
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What next?

A better paper!

Further adapting MCTS for program search.
e.g. use of grammars to introduce typing.

Application to challenging problems.
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Further Reading

Highly recommended:

A Survey of Monte Carlo Tree Search Methods, Browne et al.,
IEEE Trans. on Computational Intelligence and AI in Games, 2012.
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