Adaptive Operator Selection with Rank-based Multi-Armed Bandits

Alvaro Fialho, Marc Schoenauer & Michèle Sebag

26th COW, April 22., 2013

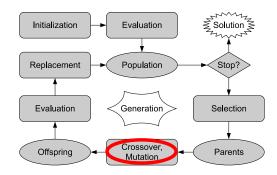
Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Outline				

- 1 Context & Motivation
- 2 Operator Selection
- 3 Credit Assignment
- 4 Empirical Validation
- 5 Conclusions & Further Work

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Context	& Motivation			

Context & Motivation

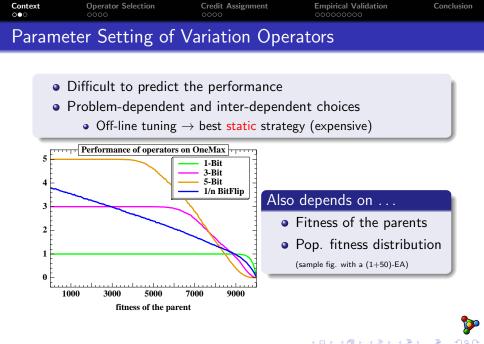
- Evolutionary Algorithms
- Adaptive Operator Selection

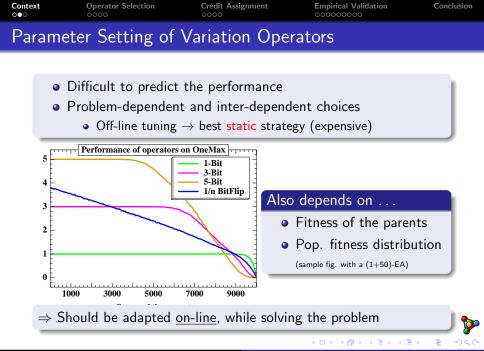

2 Operator Selection

- 3 Credit Assignment
- 4 Empirical Validation
- **5** Conclusions & Further Work

3.1 3

• 3 >


Context ●○○	Operator Selection	Credit Assignment	Empirical Validation	Conclusion			
Evolutionary Algorithms							



• Stochastic optimization algorithms (Darwinian paradigm)

- Bottleneck: parameter setting
 - Population size and number of offspring
 - Selection and replacement methods (and their parameters)
 - Variation Operators (application rate, internal parameters)
- <u>Goal</u>: Automatic setting (Crossing the Chasm)

[Moore, 1991]



Context ○○●	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
A 1				

Adaptive Operator Selection

Position of the Problem

- Given a set of K variation operators
- Select on-line the operator to be applied next
- Based on their recent effects

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Operato	r Selection			

1 Context & Motivation

Operator Selection

- A Multi-Armed Bandit problem
- Operator Selection: Discussion

3 Credit Assignment

- 4 Empirical Validation
- 5 Conclusions & Further Work

э

∃ >

 Context
 Operator Selection
 Credit Assignment
 Empirical Validation
 Conclusion

 000
 000
 000
 000000000
 000000000
 Conclusion

A (kind of) Multi-Armed Bandit problem

The Basic Multi-Armed Bandit Problem

- Given K arms (\equiv operators)
- At time t, gambler plays arm j and gets
 - $r_{j,t} = 1$ with (unknown) prob. p_j
 - $r_{j,t} = 0$ with prob. $1 p_j$

<u>Goal</u>: maximize cumulative reward \equiv minimize regret

$$\mathcal{L}(T) = \sum_{t=1}^{T} (r_t^* - r_t)$$

э

▲圖▶ ▲屋▶ ▲屋▶

The Upper Confidence Bound MAB algorithm

• Assymptotic optimality guarantees (static context) [Auer et al., 2002] Optimal $\mathcal{L}(T) = \mathcal{O}(\log T)$

• At time *t*, choose arm *i* maximizing:

$$score_{i,t} = \underbrace{\hat{q}_{i,t}}_{exploitation} + \underbrace{\sqrt{\frac{2\log\sum_{k}n_{k,t}}{n_{i,t}}}}_{exploration}$$
with
$$n_{i,t+1} = n_{i,t} + 1 \qquad \text{# times}$$
and
$$\hat{q}_{i,t+1} = \left(1 - \frac{1}{n_{i,t+1}}\right) \cdot \hat{q}_{i,t} + \frac{1}{n_{i,t+1}} \cdot r_{i,t} \quad \text{emp. qual.}$$

- Efficiency comes from optimal EvE balance
 - Interval between exploration trials increases exponentially w.r.t. # time steps

Operator Selection with UCB: shortcomings

Exploration vs. Exploitation (EvE) balance

- In UCB theory, rewards $\in \{0,1\}$; fitness-based rewards $\in [a,b]$
- UCB's EvE balance is broken, Scaling is needed:

$$score_{i,t} = \hat{q}_{i,t} + \mathcal{C}\sqrt{\frac{2\log\sum_{k}n_{k,t}}{n_{i,t}}}$$

Dynamical setting (best arm/op changes along evolution)

- Adjusting q's after a change takes a long time
- Use change detection test (e.g. Page-Hinkley)

[Hinkley, 1969]

 \Rightarrow Upon the detection of a change, restart the MAB.

$\mathsf{DMAB} = \mathsf{UCB} + \mathsf{Scaling} + \mathsf{Page-Hinkley}$

Context	Operator Selection ○○○●	Credit Assignment	Empirical Validation	Conclusion
Operator	Selection: Di	scussion		

$\mathsf{MAB} = \mathsf{UCB} + \mathsf{Scaling}$

• Optimal EvE, but in static setting... AOS is dynamic

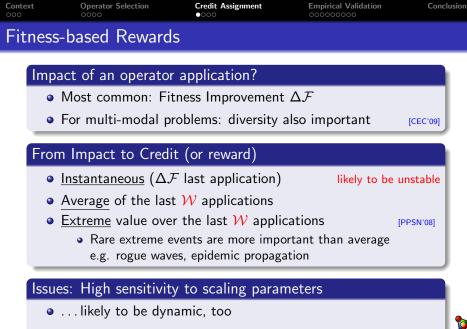
$\mathsf{DMAB} = \mathsf{MAB} + \mathsf{Page-Hinkley\ change-detection}$

- Won Pascal challenge on On-line EvE trade-off [Hartland et al., 2007]
 Utilization in the AOS context [GECCO'08]
- ullet 2 hyper-parameters: scaling ${\cal C}$ and Page-Hinkley threshold γ
- Very efficient, but very sensitive to hyper-parameter setting
- Change-detection works only when changes are abrupt

An alternative: 'More Dynamic' Reward

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Credit A	ssignment			

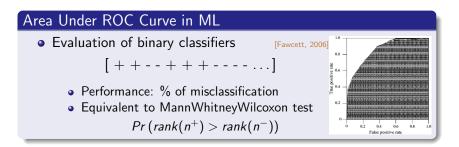
Context & Motivation


2 Operator Selection

3 Credit Assignment

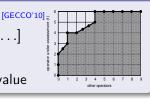
- Fitness-based Rewards
- Area-Under-the-Curve (AUC)
- Rank-based AUC with MAB

Empirical Validation

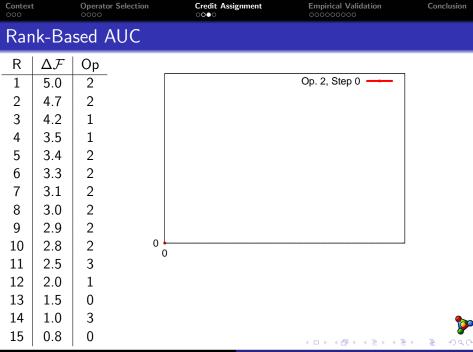

5 Conclusions & Further Work

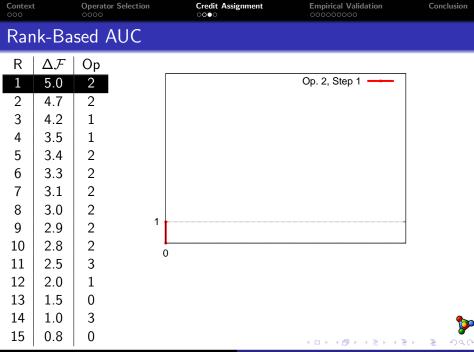
Higher robustness: Credit Assignment based on Ranks

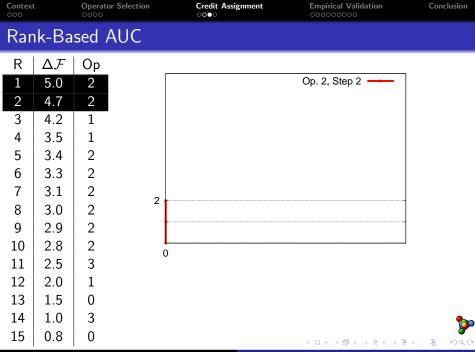
Area-Under-the-Curve (AUC)

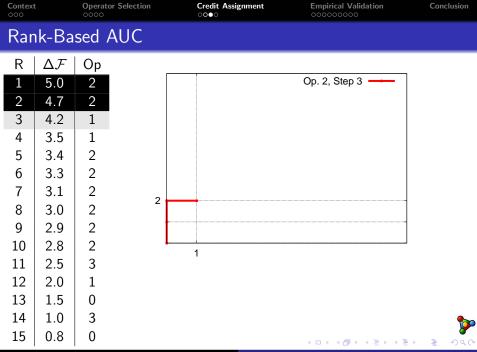


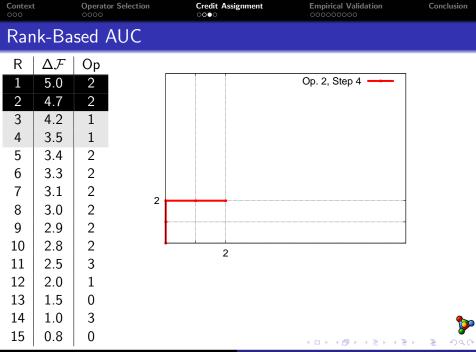
Area Under ROC Curve in AOS


• One operator versus others

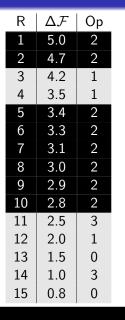

 $[op_1, op_2, op_1, op_1, op_1, op_2, op_2, \ldots]$

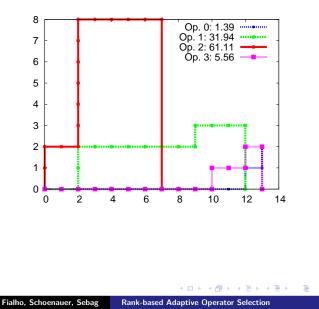

- Fitness improvements are ranked
- Size of the segment = assigned rank-value



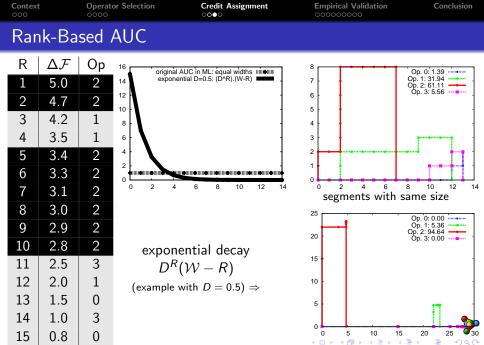

イロト イヨト イヨト イヨト

Con	text	Opera 0000	tor Selection	Credit Ass ○○●○	ignment	Empi 0000	rical Validation	Conclusion
R	ank-E	Based	AUC					
F	$ \Delta j $	F Op	- 8 -	_				
1	5.0) 2	°			Op. 2, \$	Step 15	
2	4.	7 2		······				
3	4.2	2 1		······				
4	3.5	5 1						
5	3.4	1 2						
6	3.3	3 2						
7	3.1	l 2						
8	3.0) 2						
9	2.9) 2						
10) 2.8	3 2	L	l	i	ii	7	
1	1 2.5	5 3						
12	2 2.0) 1						
13	3 1.5	5 0						
14	4 1.0) 3						6
11								a


15


0.8

0


æ

Context	Operator Selection	Credit Assignment ○○●○	Empirical Validation	Conclusion
Rank-Ba	sed AUC			

Contex	t	Operat	or Selection	Credit Assig ○○●○	nment	Empirical Validation	Conclusion
Rar	ık-Ba	sed ,	AUC				
R	$\Delta \mathcal{F}$	Ор					
1	5.0	2					
2	4.7	2					
3	4.2	1	16 original	AUC in ML: equal widt	ths IIIIIMIIII	8	Op. 0: 1.39 Op. 1: 31.94
4	3.5	1	12 ·			6 -	Op. 2: 61.11 Op. 3: 5.56
5	3.4	2	10 -			5 -	
6	3.3	2	8 -]	4	
7	3.1	2	4 -			2	
8	3.0	2	2			1	••••••••••••••••••••••••••••••••••••••
9	2.9	2	0 2 4	6 8 10	12 14	0 2 4 6	8 10 12 14
10	2.8	2				segments with	i same size
11	2.5	3					
12	2.0	1					
13	1.5	0					
14	1.0	3					*
15	0.8	0				(日)	<
			Eielke Seke	onour Cohor		Adaptive Operator Selecti	om 1E

 Context
 Operator Selection
 Credit Assignment
 Empirical Validation
 Conclusion

 000
 0000
 0000
 00000000
 000000000
 Conclusion

Rank-based AUC with MAB

Rationale

- AUC: behavior of all ops.: dynamic by construction
- AUC is already an aggregation: \Rightarrow directly use AUC in UCB:

$$score_{j,t} = AUC_{j,t} + C \cdot \sqrt{\frac{2\log\sum_k n_{k,t}}{n_{j,t}}}$$

Area-Under-Curve (AUC)

- Ranks over fitness improvements $(\Delta \mathcal{F})$
- Invariant w.r.t. linear scaling of ${\cal F}$

Fitness-based AUC (FAUC)

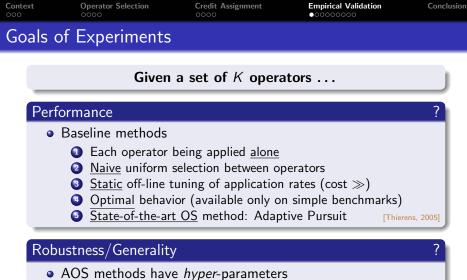
- Ranks over fitness values (${\cal F}$), rather than ranks over $\Delta {\cal F}$
- Invariant w.r.t monotonous transformations of ${\cal F}$

 \rightarrow Comparison-based AOS

Fialho, Schoenauer, Sebag

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Empirica	I Validation			

Context & Motivation

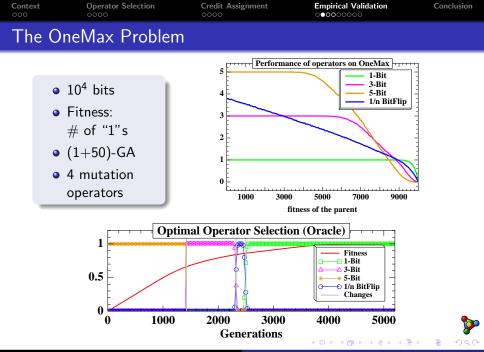

2 Operator Selection

3 Credit Assignment

4 Empirical Validation

- Goals of Experiments
- (1+50)-EA on the OneMax Problem
- DE on BBOB continuous Benchmarks

5 Conclusions & Further Work



- Tuned off-line by F-RACE
 - Robustness w.r.t. hyper-parameter setting
 - Generality w.r.t. different problems/landscapes
 - Invariance properties

Rank-based Adaptive Operator Selection

[Birattari et al., 2002]

Comparative Results

Fialho, Schoenauer, Sebag

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
			00000000	

Monotonous Transformations of the Fitness

- Original OneMax: $\mathcal{F} = \sum_{i=1}^{n} b_i$
- 3 monotonous transformations: log(\mathcal{F}), exp(\mathcal{F}) and \mathcal{F}^2

(h-l)	$\mathcal{F} = \sum b_i$	$log(\mathcal{F})$	$\exp(\mathcal{F})$	\mathcal{F}^2	AOS tech.
485	5103/427	5195/430	5562/950	5588/950	AUC-MAB
807	5123/218	5431/223	5930/334	5792/382	<u>Ext</u> -AP
0	5726/399	5726/399	5726/399	5726/399	FAUC-MAB
2591	5376/285	7967/718	7722/2151	6138/516	Ext-DMAB
6971	6059/667	8863/694	13030/3053	12136/949	Ext-SLMAB
7052	9044/840	7947/1267	14999/0	14999/0	Ext-MAB

Э

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
			00000000	

Monotonous Transformations of the Fitness

- Original OneMax: $\mathcal{F} = \sum_{i=1}^{n} b_i$
- 3 monotonous transformations: log(\mathcal{F}), exp(\mathcal{F}) and \mathcal{F}^2

(h-l)	$\mathcal{F} = \sum b_i$	$log(\mathcal{F})$	$\exp(\mathcal{F})$	\mathcal{F}^2	AOS tech.
485	5103/427	5195/430	5562/950	5588/950	AUC-MAB
807	5123/218	5431/223	5930/334	5792/382	<u>Ext</u> -AP
0	5726/399	5726/399	5726/399	5726/399	FAUC-MAB
2591	5376/285	7967/718	7722/2151	6138/516	Ext-DMAB
6971	6059/667	8863/694	13030/3053	12136/949	Ext-SLMAB
7052	9044/840	7947/1267	14999/0	14999/0	Ext-MAB

Other (artificial) scenarios

- Binary: Long K-Path, Royal Road, ...
- Combinatorial: SAT
- Continuous: BBOB

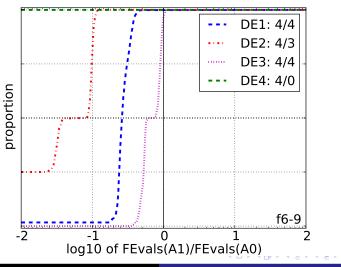
 Context
 Operator Selection
 Credit Assignment
 Empirical Validation
 Conclusion

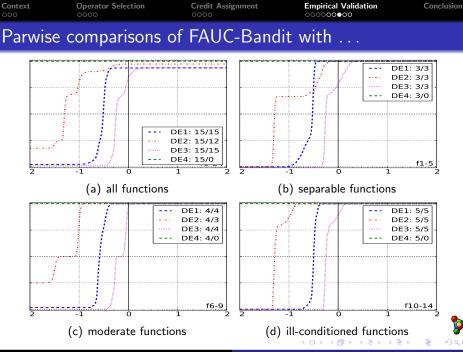
 000
 000
 000
 000
 000
 000

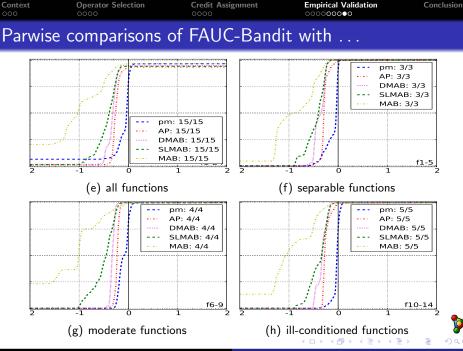
DE on BBOB continuous Benchmarks

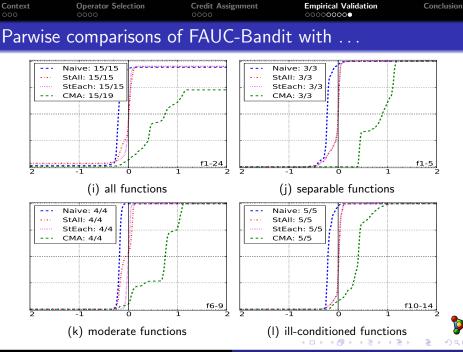
• Exp. framework for rigorous benchmarking

[Hansen et al., 2010]


- 4 同 2 4 三 2 4 三 2 4


- 24 continuous functions, 15 instances per function
- Several problem dimensions (2, 3, 5, 10, <u>20</u>, 40)


Adaptive Operator Selection in Differential Evolution


- A completely different evolutionary algorithm [Storn and Price, 1995]
- $NP = 100 \cdot DIM$; CR = 1.0; F = 0.5
- With 4 possible mutation strategies
 - rand/1, rand/2, rand-to-best/2, current-to-rand/1

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
<u> </u>				

Conclusions & Further Work

- Context & Motivation
- 2 Operator Selection
- 3 Credit Assignment
- ④ Empirical Validation
- 5 Conclusions & Further Work

• 3 3

ns			
imic Contributic	ons		
erator Selection			
	-	st	[GECCO'08]
dit Assignment			
Extreme value-ba	ased $(\Delta \mathcal{F})$		[PPSN'08]
Rank-based metl	hods		[GECCO'10]
S Combinations			
FAUC: comp FAUC: comp	parison-based		
	erator Selection MAB = UCB + DMAB = MAB dit Assignment Extreme value-base Rank-based meth S Combinations Extreme-xMAB: (F)AUC-MAB: e	$ \begin{array}{l} MAB = UCB + Scaling \\ DMAB = MAB + Page-Hinkley tes \\ dit \ Assignment \\ e \ Extreme \ value-based \ (\Delta\mathcal{F}) \\ e \ Rank-based \ methods \\ S \ Combinations \\ e \ Extreme-xMAB: \ efficient, \ but \ sensiti \\ \end{array} $	erator Selection • MAB = UCB + Scaling • DMAB = MAB + Page-Hinkley test • dit Assignment • Extreme value-based $(\Delta \mathcal{F})$ • Rank-based methods S Combinations • Extreme-xMAB: efficient, but sensitive w.r.t. hyper-parameters • (F)AUC-MAB: efficient and robust w.r.t. hyper-parameters

- \Rightarrow Combining concepts from ML: MABs and AUC
- \Rightarrow **Extending** them to a dynamic context

Context	Operator Selection 0000	Credit Assignment	Empirical Validation	Conclusion
Cond	clusions (2)			
E	mpirical Validation	(perforn	nance, robustness and ger	erality)
	• Genetic Algorithm	S		
	 Artificial scena 	rios	[GECCO'08, AMAI'10, G	ECCO'10]
	 Boolean proble 	ms [PPSN'08, L	ON'09, GECCO'09, AMAI'10, GE	CCO'10]
	 OneMax, I 	Long K-Path and Roya	al Road problems	
	 Memetic Algorithm 	ns		
			- I. A .	

- SAT problems, with the <u>Compass</u> Credit Assign. [CEC'09, Chapter'10] A highly multimodal context
- Differential Evolution
 - Continuous problems

[BBOB'10, PPSN'10]

< ∃⇒

 Context
 Operator Selection
 Credit Assignment
 Empirical Validation
 Conclusion

 000
 000
 000
 000000000
 000000000

Some Perspectives for Further Work (from 12/2010!)

- Application extensions: AOS paradigm is very general
 - Use within other meta-heuristics
 - Use at the level of hyper-heuristics
 - Cross-domain Heuristic Search Challenge (CHeSC)
- Algorithmic extensions: towards real-world problems
 - Extend to multi-modal (diversity, pop.size, ...)
 - Extend to multi-objective (Pareto, hyper-volume, ...)
- First trial in real-world: sustainable development
 - Optimization of designs of buildings for energy efficiency

||◆同 || ◆ 臣 || ◆ 臣 ||

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Our F	Publications I			
	Adaptive operator selection with	nauer, M., and Sebag, M. (2008) 1 dynamic multi-armed bandits. ary Computation Conference (GE		
	Fialho, A., Da Costa, L., Schoer Extreme value based adaptive o	nauer, M., and Sebag, M. (2008)).	
	Dynamic multi-armed bandits a	nauer, M., and Sebag, M. (2009) nd extreme value-based rewards and Intelligent Optimization (LI	for AOS in evolutionary algorithms.	
	Extreme compass and dynamic	on, F., Schoenauer, M., and Seba multi-armed bandits for adaptive lutionary Computation (CEC). IE	operator selection.	
		l Sebag, M. (2009). election techniques on the royal re ary Computation Conference (GE		
	Adaptive operator selection and	on, F., Schoenauer, M., Lardeux, management in evolutionary alg onomous Search. Springer. (to ap	gorithms.	
	Analyzing bandit-based adaptive	nauer, M., and Sebag, M. (2010) e operator selection mechanisms. I. – Special Issue on Learning and		۶

<ロ> (四) (四) (三) (三) (三) 三

Context	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Our F	Publications II			
	Fialho, A., Schoenauer, M., and	l Sebag, M. (2010).		
	Toward comparison-based adapt In Proc. Genetic and Evolutiona	ary Computation Conference (GB	ECCO). ACM.	
	Gong, W., <u>Fialho, A.</u> , and Cai, Adaptive strategy selection in d In <i>Proc. Genetic and Evolutiona</i>	ifferential evolution.	<i>ECCO</i>). ACM.	
	Fialho, A., Schoenauer, M., and	I Sebag, M. (2010).		
Ē	Fitness-AUC bandit adaptive str In Black-Box Optimization Ben	chmarking Workshop (BBOB-GI		
	Fialho, A., Gong, W., and Cai, Probability matching-based ada In Black-Box Optimization Ben	ptive strategy selection vs. unifo	rm strategy selection within DE. ECCO). ACM.	
	Fialho, A. and Ros, R. (2010).		·	

Analysis of adaptive strategy selection within differential evolution on the BBOB-2010 noiseless benchmark. Research Report RR-7259, INRIA.

Fialho, A., Ros, R., Schoenauer, M., and Sebag, M. (2010).

Comparison-based adaptive strategy selection in differential evolution. In Proc. Intl. Conf. on Parallel Problem Solving from Nature (PPSN). Springer.

Multi-objective differential evolution with adaptive control of parameters and operators. In Proc. Intl. Conf. on Learning and Intelligent Optimization (LION). Springer. (to appear)

イロン 不同と 不同と 不同と

Adaptive Operator Selection with Rank-based Multi-Armed Bandits

Alvaro Fialho, Marc Schoenauer & Michèle Sebag

26th COW, April 22., 2013

Context 000	Operator Selection	Credit Assignment	Empirical Validation	Conclusion
Other De	favoran			

Other References I

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).

Finite-time analysis of the multi-armed bandit problem. *Machine Learning*, 47(2-3):235–256.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics.

In W.B. Langdon et al., editor, Proc. Genetic and Evolutionary Computation Conference (GECCO), pages 11–18. Morgan Kaufmann.

Fawcett, T. (2006).

An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–874.

Hansen, N., Auger, A., Finck, S., and Ros, R. (2010).

Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA.

Hartland, C., Baskiotis, N., Gelly, S., Teytaud, O., and Sebag, M. (2007). Change point detection and meta-bandits for online learning in dynamic environments. In Proc. Conférence Francoshone sur l'Apprentissage Automatique (CAPS).

Hinkley, D. (1969).

Inference about the change point in a sequence of random variables. *Biometrika*, 57(1):1–17.

(日) (四) (三) (三) (三)

Context	Operator Selection	Credit Assignment	Empirical Validation
000	0000	0000	00000000

Other References II

Moore, G. (1991).

Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Customer. Collins Business Essentials.

Storn, R. and Price, K. (1995).

Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces.

Technical Report TR-95-012, Intl. Computer Science Institute.

Thierens, D. (2005).

An adaptive pursuit strategy for allocating operator probabilities.

In H.-G. Beyer et al., editor, Proc. Genetic and Evolutionary Computation Conference (GECCO), pages 1539–1546. ACM.

3

・ロト ・回ト ・ヨト ・ヨト

Conclusion