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Evolutionary Algorithms

Stochastic optimization algorithms (Darwinian paradigm)
Bottleneck: parameter setting

Population size and number of offspring
Selection and replacement methods (and their parameters)
Variation Operators (application rate, internal parameters)

Goal: Automatic setting (Crossing the Chasm) [Moore, 1991]
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Parameter Setting of Variation Operators

Difficult to predict the performance

Problem-dependent and inter-dependent choices

Off-line tuning → best static strategy (expensive)
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Performance of operators on OneMax

Also depends on . . .

Fitness of the parents

Pop. fitness distribution
(sample fig. with a (1+50)-EA)

⇒ Should be adapted on-line, while solving the problem
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Adaptive Operator Selection

Position of the Problem

Given a set of K variation operators

Select on-line the operator to be applied next

Based on their recent effects

Operator
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A (kind of) Multi-Armed Bandit problem

The Basic Multi-Armed Bandit Problem

Given K arms (≡ operators)

At time t, gambler plays arm j and gets

rj,t = 1 with (unknown) prob. pj
rj,t = 0 with prob. 1− pj

Goal: maximize cumulative reward ≡ minimize regret

L(T ) =
T∑

t=1

(r∗t − rt)
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The Upper Confidence Bound MAB algorithm

Assymptotic optimality guarantees (static context) [Auer et al., 2002]

Optimal L(T ) = O(logT )

At time t, choose arm i maximizing:

scorei ,t = q̂i ,t
︸︷︷︸

exploitation

+

√

2 log
∑

k nk,t

ni ,t
︸ ︷︷ ︸

exploration

with ni ,t+1 = ni ,t + 1 # times

and q̂i ,t+1 =
(

1− 1
ni,t+1

)

· q̂i ,t +
1

ni,t+1
· ri ,t emp. qual.

Efficiency comes from optimal EvE balance

Interval between exploration trials increases exponentially
w.r.t. # time steps
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Operator Selection with UCB: shortcomings

Exploration vs. Exploitation (EvE) balance

In UCB theory, rewards ∈ {0, 1}; fitness-based rewards ∈ [a, b]

UCB’s EvE balance is broken, Scaling is needed:

scorei ,t = q̂i ,t + C
√

2 log
∑

k nk,t
ni,t

Dynamical setting (best arm/op changes along evolution)

Adjusting q̂’s after a change takes a long time

Use change detection test (e.g. Page-Hinkley) [Hinkley, 1969]

⇒ Upon the detection of a change, restart the MAB.

DMAB = UCB + Scaling + Page-Hinkley
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Operator Selection: Discussion

MAB = UCB + Scaling

Optimal EvE, but in static setting. . . AOS is dynamic

DMAB = MAB + Page-Hinkley change-detection

Won Pascal challenge on On-line EvE trade-off [Hartland et al., 2007]

Utilization in the AOS context [GECCO’08]

2 hyper-parameters: scaling C and Page-Hinkley threshold γ

Very efficient, but very sensitive to hyper-parameter setting

Change-detection works only when changes are abrupt

An alternative: ’More Dynamic’ Reward
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Credit Assignment

1 Context & Motivation

2 Operator Selection

3 Credit Assignment
Fitness-based Rewards
Area-Under-the-Curve (AUC)
Rank-based AUC with MAB

4 Empirical Validation

5 Conclusions & Further Work
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Fitness-based Rewards

Impact of an operator application?

Most common: Fitness Improvement ∆F

For multi-modal problems: diversity also important [CEC’09]

From Impact to Credit (or reward)

Instantaneous (∆F last application) likely to be unstable

Average of the last W applications

Extreme value over the last W applications [PPSN’08]

Rare extreme events are more important than average
e.g. rogue waves, epidemic propagation

Issues: High sensitivity to scaling parameters

. . . likely to be dynamic, too

Higher robustness: Credit Assignment based on Ranks
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Area-Under-the-Curve (AUC)

Area Under ROC Curve in ML

Evaluation of binary classifiers [Fawcett, 2006]

[ + + - - + + + - - - - . . . ]

Performance: % of misclassification
Equivalent to MannWhitneyWilcoxon test

Pr (rank(n+) > rank(n−))

Area Under ROC Curve in AOS

One operator versus others [GECCO’10]
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Rank-Based AUC

R ∆F Op
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Rank-based AUC with MAB

Rationale

AUC: behavior of all ops.: dynamic by construction

AUC is already an aggregation: ⇒ directly use AUC in UCB:

scorej ,t = AUCj ,t + C ·
√

2 log
∑

k nk,t
nj,t

Area-Under-Curve (AUC)

Ranks over fitness improvements (∆F)

Invariant w.r.t. linear scaling of F

Fitness-based AUC (FAUC)

Ranks over fitness values (F), rather than ranks over ∆F

Invariant w.r.t monotonous transformations of F
→ Comparison-based AOS
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Goals of Experiments

Given a set of K operators . . .

Performance ?

Baseline methods
1 Each operator being applied alone
2 Naive uniform selection between operators
3 Static off-line tuning of application rates (cost ≫)
4 Optimal behavior (available only on simple benchmarks)
5 State-of-the-art OS method: Adaptive Pursuit [Thierens, 2005]

Robustness/Generality ?

AOS methods have hyper-parameters
Tuned off-line by F-RACE [Birattari et al., 2002]

Robustness w.r.t. hyper-parameter setting
Generality w.r.t. different problems/landscapes

Invariance properties
Fialho, Schoenauer, Sebag Rank-based Adaptive Operator Selection 18
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The OneMax Problem

104 bits

Fitness:
# of “1”s

(1+50)-GA

4 mutation
operators

fitness of the parent
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Comparative Results
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Monotonous Transformations of the Fitness

Original OneMax: F =
∑n

i=1 bi

3 monotonous transformations: log(F), exp (F) and F2

(h-l) F =
∑

bi log(F) exp(F) F
2 AOS tech.

485 5103/427 5195/430 5562/950 5588/950 AUC-MAB

807 5123/218 5431/223 5930/334 5792/382 Ext-AP

0 5726/399 5726/399 5726/399 5726/399 FAUC-MAB

2591 5376/285 7967/718 7722/2151 6138/516 Ext-DMAB

6971 6059/667 8863/694 13030/3053 12136/949 Ext-SLMAB

7052 9044/840 7947/1267 14999/0 14999/0 Ext-MAB
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Original OneMax: F =
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6971 6059/667 8863/694 13030/3053 12136/949 Ext-SLMAB

7052 9044/840 7947/1267 14999/0 14999/0 Ext-MAB

Other (artificial) scenarios

Binary: Long K-Path, Royal Road, . . .

Combinatorial: SAT

Continuous: BBOB
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DE on BBOB continuous Benchmarks

Exp. framework for rigorous benchmarking [Hansen et al., 2010]

24 continuous functions, 15 instances per function

Several problem dimensions (2, 3, 5, 10, 20, 40)

Adaptive Operator Selection in Differential Evolution

A completely different evolutionary algorithm [Storn and Price, 1995]

NP = 100 · DIM;CR = 1.0;F = 0.5

With 4 possible mutation strategies

rand/1, rand/2, rand-to-best/2, current-to-rand/1
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Parwise comparisons of FAUC-Bandit with . . . (sample fig)
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Parwise comparisons of FAUC-Bandit with . . .
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Conclusions

Algorithmic Contributions

Operator Selection

MAB = UCB + Scaling
DMAB = MAB + Page-Hinkley test [GECCO’08]

Credit Assignment

Extreme value-based (∆F) [PPSN’08]

Rank-based methods [GECCO’10]

AOS Combinations

Extreme-xMAB: efficient, but sensitive w.r.t. hyper-parameters
(F)AUC-MAB: efficient and robust w.r.t. hyper-parameters

FAUC: comparison-based

⇒ Combining concepts from ML: MABs and AUC
⇒ Extending them to a dynamic context

Fialho, Schoenauer, Sebag Rank-based Adaptive Operator Selection 28



Context Operator Selection Credit Assignment Empirical Validation Conclusion

Conclusions (2)

Empirical Validation (performance, robustness and generality)

Genetic Algorithms

Artificial scenarios [GECCO’08, AMAI’10, GECCO’10]

Boolean problems [PPSN’08, LION’09, GECCO’09, AMAI’10, GECCO’10]

OneMax, Long K-Path and Royal Road problems

Memetic Algorithms

SAT problems, with the Compass Credit Assign. [CEC’09, Chapter’10]

A highly multimodal context

Differential Evolution

Continuous problems [BBOB’10, PPSN’10]
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Some Perspectives for Further Work (from 12/2010!)

Application extensions: AOS paradigm is very general

Use within other meta-heuristics
Use at the level of hyper-heuristics

Cross-domain Heuristic Search Challenge (CHeSC)

Algorithmic extensions: towards real-world problems

Extend to multi-modal (diversity, pop.size, . . . )
Extend to multi-objective (Pareto, hyper-volume, . . . )

First trial in real-world: sustainable development

Optimization of designs of buildings for energy efficiency
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