Searching for Strategies that Verify MDE Toolchains

Simon Poulding, University of York & DAASE collaboration with Louis Rose, University of York

Context

Approach

Implementation

Case Study

Metamodels

In Model-Driven Engineering (MDE), model instances must comply to a metamodel that specifies attributes and associations

Model Transformations

A common operation in MDE toolchains is the transformation of a model to another that conforms to a different metamodel

Testing Model Transformations

To test a transformations requires a set of (possibly random) test cases in which the input data is a model instance

Y9

Motivation

Our case study is motivated by a project in which model of behaviour is transformed into a form than can be embodied on a Lego Mindstorms robot

How can we randomly generate models for testing transformations so that a small test set of the models satisfies our testing objective?

Context

Approach

Implementation

Case Study

Context-Free Grammars

A Context-Free Grammar can be used to specify how to construct 'well-formed' test data

Stochastic Grammars

By annotating productions rule with weights, a probability distribution is defined over the language defined by the grammar

Innovation: Conditional Weights

Making the weights conditional on the values of other variables introduces a limited form of context-sensitivity

Innovation: Binned Scalars

Adaptively 'binning' scalar variables enables a compact representation of distributions over large intervals

$$\begin{split} S &\rightarrow Expr \\ Expr &\rightarrow Num \mid Expr \text{ Op Expr} \\ Op &\rightarrow `+` \mid `-` \mid `*` \mid `/` \\ Num &\rightarrow `0` \mid `1` \mid `2` \mid `3` \mid `4` \mid `5` \end{split}$$

$$S \rightarrow Expr$$

 $Expr \rightarrow Num \mid Expr Op Expr$
 $Op \rightarrow `+` \mid `-` \mid `*` \mid `/`$
 $Num \rightarrow `[0,228]` \mid `[229,433]` \mid `[434,511]`$

Metaheuristic Search

To optimise a distribution, search is applied to the weights, the conditionality between variables, and the partitioning of scalar ranges

Context

Approach

Implementation

Case Study

HUTN

HUTN is a textual notation for model instances

Grammar To Emit HUTN

We use a stochastic context-free grammar that emits HUTN which complies with the chosen metamodel

Metamodel * 1... id : String cost : Int 0..* size : Int

HUTN Grammar

$$\begin{split} & S \rightarrow A \\ & A \rightarrow `A``{'`id:' String `b:' B1..* `c:' C0..*`}' \\ & B1..* \rightarrow B \mid B `,' B1..* \\ & B \rightarrow `{'`cost:' Cost `}' \\ & Cost \rightarrow `[0,100]' \\ & \cdots \rightarrow \cdots \end{split}$$

Optimisation Process

The HUTN grammar is optimised by evaluating set of models sampled from the candidate grammar

(5) use fitness to optimise grammar (4) measure fitness of model instances

Physical Implementation

Search executable optimises and samples from the grammar; in a servlet, instrumented MDE transformation converts HUTN to instances and assesses; components communicate over HTTP

Context

Approach

Implementation

Case Study

Source Metamodel

Specifies the models that are the inputs to the transformation under test

Objective: Statistical Testing

Want to maximise frequency of covering every rule, guard, and condition as frequently as possible in order to minimise test set size

coverage element

Experiments

Compare efficiency of optimised and unoptimised grammar; random search as measure of 'difficulty'

Optimised using hill-climbing (800 evaluations)

V

Unoptimised ('uniform' distribution)

V

Optimised using random search (800 evaluations)

Results

Number of test cases to cover all elements (with a 90% likelihood) - smaller is better

Other Outcomes

Process highlighted ambiguities and missing information in the original metamodel

Future Work

Automate metamodel to HUTN grammar conversion; speed up evaluation

Further Details

Simon Poulding, Robert Alexander, John A. Clark, and Mark J. Hadley *The Optimisation of Stochastic Grammars to Enable Cost-Effective Probabilistic Structural Testing* Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2013) (to appear)

Louis M. Rose and Simon Poulding *Efficient Probabilistic Testing of Model Transformations using Search* Proceedings of 1st International Workshop on Combining Modelling and Search-Based Software Engineering (CMBSE 2013) (to appear)