
Searching for Strategies that Verify MDE Toolchains

Simon Poulding, University of York & DAASE
collaboration with Louis Rose, University of York

Context

Approach

Implementation

Case Study

Metamodels

A
id : String

B
cost : Int

C
size : Int

1..*

0..*

A
id : F45

B
cost : 7

C
size : 25

C
size : 30

A
id : J03

B
cost : 3

B
cost : 18

Metamodel

Instance 1

Instance 2

In Model-Driven Engineering (MDE), model
instances must comply to a metamodel
that specifies attributes and associations

Model Transformations

A1
B1

B2

C1

X1

Y1

Y2

Y3
model

transformation

input
model

output
model

A common operation in MDE toolchains is
the transformation of a model to another
that conforms to a different metamodel

Testing Model Transformations

A2 B3

B4

A1 B1

C1 C2 C3

A7 B8

B9
C8 C9

.

.

.

X1

Y1

Y2

Y3

X2

Y4

Y5

X6

Y7

Y8

Y9

.

.

.

.

.

.

test case 1

test case 2

test case N

To test a transformations requires a set of
(possibly random) test cases in which the
input data is a model instance

Motivation
Our case study is motivated by a project in
which model of behaviour is transformed
into a form than can be embodied on a
Lego Mindstorms robot

http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg

http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg
http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg

Problem Statement

How can we randomly generate models for
testing transformations so that a small test set of

the models satisfies our testing objective?

Context

Approach

Implementation

Case Study

Context-Free Grammars

3

4 + 2 * 5

3 * 2 - 5 / 0

/ 3 -

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

A Context-Free Grammar can be used to
specify how to construct ‘well-formed’ test
data

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

Stochastic Grammars

1 3 3 3 33

By annotating productions rule with
weights, a probability distribution is defined
over the language defined by the grammar

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

Innovation: Conditional Weights

2 2 2 2 22

2 2 2 2 22

2 2 2 2 22

1 3 3 3 33

‘+’

‘-’

‘*’
‘/’

Making the weights conditional on the
values of other variables introduces a
limited form of context-sensitivity

Innovation: Binned Scalars

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘[0,228]’ | ‘[229,433]’ | ‘[434,511]’

Adaptively ‘binning’ scalar variables
enables a compact representation of
distributions over large intervals

Metaheuristic Search

S ! Expr
Expr ! Num | Expr Op Expr
Op ! ‘+’ | ‘-’ | ‘*’ | ‘/’

Num ! ‘[0,228]’ | ‘[229,433]’ | ‘[434,511]’

1 3 2

To optimise a distribution, search is applied
to the weights, the conditionality between
variables, and the partitioning of scalar
ranges

Context

Approach

Implementation

Case Study

HUTN

A
id : F45

B
cost : 7

C
size : 25

C
size : 30

A {
 id: “F45”
 b: B { cost: 7}
 c: C { size: 25}, C {size: 30}
}

HUTN is a textual notation for model
instances

Model Instance Model Instance

Grammar To Emit HUTN

A
id : String

B
cost : Int

C
size : Int

1..*

0..*

Metamodel

S ! A

A ! ‘A’ ‘{’ ‘id:’ String ‘b:’ B1..* ‘c:’ C0..* ‘}’
B1..* ! B | B ’,’ B1..*

B ! ‘{’ ‘cost:’ Cost ‘}’
Cost ! ‘[0,100]’

· · · ! · · ·

HUTN Grammar

We use a stochastic context-free grammar
that emits HUTN which complies with the
chosen metamodel

Optimisation Process

metamodel HUTN grammar

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

(2) sample instances
from stochastic

grammar
(1) transform
metamodel to

HUTN grammar

(3) transform HUTN
instances to

model instances

(4) measure fitness
of model instances

(5) use fitness
to optimise grammar

The HUTN grammar is optimised by
evaluating set of models sampled from the
candidate grammar

Physical Implementation

metamodel HUTN grammar

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

Search Executable Instrumented
Transformation

Search executable optimises and samples
from the grammar; in a servlet,
instrumented MDE transformation converts
HUTN to instances and assesses;
components communicate over HTTP

HTTP

Context

Approach

Implementation

Case Study

Source Metamodel
Specifies the models that are the inputs to
the transformation under test

http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg

http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg
http://lego.wikia.com/wiki/File:LEGO_Mindstorms_NXT.jpg.jpeg

Objective: Statistical Testing

fre
qu

en
cy

coverage element

Want to maximise frequency of covering
every rule, guard, and condition as
frequently as possible in order to minimise
test set size

Experiments

Optimised using hill-climbing (800 evaluations)

Optimised using random search (800 evaluations)

Unoptimised (‘uniform’ distribution)

v

v

Compare efficiency of optimised and
unoptimised grammar; random search as
measure of ‘difficulty’

Results

optimised (hill-climb)

unoptimised

optimised (random search)

0 100 200 300
number of test cases

Number of test cases to cover all elements
(with a 90% likelihood) - smaller is better

Other Outcomes
Process highlighted ambiguities and
missing information in the original
metamodel

Future Work
Automate metamodel to HUTN grammar
conversion; speed up evaluation

metamodel HUTN grammar

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

HUTN instance model instance

Search Executable Instrumented
TransformationHTTP

Further Details

Louis M. Rose and Simon Poulding
Efficient Probabilistic Testing of Model Transformations using Search
Proceedings of 1st International Workshop on Combining Modelling and Search-
Based Software Engineering (CMBSE 2013)
(to appear)

Simon Poulding, Robert Alexander, John A. Clark, and Mark J. Hadley
The Optimisation of Stochastic Grammars to Enable Cost-Effective Probabilistic
Structural Testing
Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2013)
(to appear)

