
Evolving unrestricted Java software
with FINCH

Michael Orlov and Moshe Sipper
orlovm, sipper@cs.bgu.ac.il

Department of Computer Science
Ben-Gurion University, Israel

Dynamic Adaptive SBSE
The 26th CREST Open Workshop

April 2013, UCL

mailto:orlovm@cs.bgu.ac.il?to=sipper@cs.bgu.ac.il&Subject=FINCH

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction
Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

2 / 54

GP: Programs or Representations?

“While it is common to describe GP as evolving programs,
GP is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development.”

“It is instead more common to evolve programs
(or expressions or formulae)

in a more constrained and often domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction
Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

3 / 54

GP: Programs or Representations?

“While it is common to describe GP as evolving programs,
GP is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development.”

“It is instead more common to evolve programs
(or expressions or formulae)

in a more constrained and often domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction
Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

4 / 54

Our Goals

From programs. . .
Evolve actual programs

written in Java

. . . to software!
Improve (existing) software

written in unrestricted Java

Extending prior work
Existing work uses restricted subsets of Java bytecode as
representation language for GP individuals

We evolve unrestricted bytecode

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction
Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

5 / 54

Our Goals

From programs. . .
Evolve actual programs

written in Java

. . . to software!
Improve (existing) software

written in unrestricted Java

Extending prior work
Existing work uses restricted subsets of Java bytecode as
representation language for GP individuals

We evolve unrestricted bytecode

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

6 / 54

Let’s Evolve Java Source Code

• Rely on the building blocks in the initial population
• Defining genetic operators is problematic
• How do we define good source-code crossover?

Factorial (recursive)
class F {

int fact(int n) {
int ans = 1;

if (n > 0)
ans = n *

fact(n-1);

return ans;
}

}

⇐

Factorial (iterative)
class F {

int fact(int n) {
int ans = 1;

for (; n > 0; n--)
ans = ans * n;

return ans;
}

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

7 / 54

Oops

• Source-level crossover typically produces garbage

Factorial (recursive ←−× iterative)
class F {

int fact(int n) {
int ans = 1;

if (n > = 1;
for (; n > 0; n--)

ans = ans * n; n-1);

return ans;
}

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

8 / 54

Oops

• Source-level crossover typically produces garbage

Factorial (recursive ←−× iterative)
class F {

int fact(int n) {
int ans = 1;

if (n > = 1;
for (; n > 0; n--)

ans = ans * n; n-1);

return ans;
}

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

9 / 54

Parse Trees

• Maybe we can design better genetic operators?

• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

10 / 54

Parse Trees

• Maybe we can design better genetic operators?
• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

11 / 54

Parse Trees

• Maybe we can design better genetic operators?
• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

12 / 54

Bytecode

Better than parse trees:
Let’s use bytecode!

Java Virtual Machine (JVM)
• Source code is compiled to platform-neutral bytecode
• Bytecode is executed with fast just-in-time compiler
• High-order, simple yet powerful architecture
• Stack-based, supports hierarchical object types
• Not limited to Java!

(Scala, Groovy, Jython, Kawa, Clojure, . . .)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

13 / 54

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

14 / 54

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

15 / 54

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

16 / 54

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code

• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

17 / 54

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

18 / 54

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate

• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

19 / 54

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring

• Conclusion: Avoid bad crossover and mutation

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Crossover

Experiments

In the Wild

Conclusions

References

20 / 54

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

21 / 54

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

22 / 54

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

23 / 54

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

24 / 54

Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Good crossover
α β

pre-stack **AB **AA
post-stack **B **C
depth 3 2

Stack pops “AB”
(2 stop tack frames) are
narrower than “AA”,
whereas stack push “C” is
narrower than “B”

Types hierarchy: C → B → A

(see [Orlov and Sipper, 2009, 2011] for full formal definitions)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

25 / 54

Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Bad crossover
α β

pre-stack **AB **Af
post-stack **B **A
depth 3 2

Stack pops “AB” are not
narrower than “Af”
(B and f are incompatible);
stack push “A” is not
narrower than “B”

Types hierarchy: B → A; f is a float

(see [Orlov and Sipper, 2009, 2011] for full formal definitions)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

26 / 54

Symbolic Regression
As an evolutionary example. . .

Parameters
• Objective: symbolic regression, x4 + x3 + x2 + x
• Fitness: sum of errors on 20 random data points in [−1, 1]
• Input: Number num (a Java type)

Seeding
• Population initialized using seeding

[Langdon and Nordin, 2000]
• Seed population with clones of Koza’s original
worst-of-generation-0

[Koza, 1992]

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

27 / 54

Symbolic Regression
As an evolutionary example. . .

Parameters
• Objective: symbolic regression, x4 + x3 + x2 + x
• Fitness: sum of errors on 20 random data points in [−1, 1]
• Input: Number num (a Java type)

Seeding
• Population initialized using seeding

[Langdon and Nordin, 2000]
• Seed population with clones of Koza’s original
worst-of-generation-0

[Koza, 1992]

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

28 / 54

Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Original Lisp individual and its tree representation:

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X
X)))))

X

X

X X X

EXP

-

% RLOG

-

SIN

RLOG

*

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

29 / 54

Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Translation to unrestricted Java

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {

double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

}

/* Rest of class omitted */
}

We added a couple of building blocks in the last line

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

30 / 54

Symbolic Regression
Setup and Statistics

Setup (similar to Koza’s)
• Population: 500 individuals
• Generations: 51 (or less)
• Probabilities: pcross = 0.9

(α and β segments are uniform over segment sizes)
• Selection: binary tournament

Statistics
• Yield: 99% of runs successful (out of 100)
• Runtime: 30–60 s on dual-core 2.6GHz Opteron
• Memory limits: insignificant w.r.t. runtime

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

31 / 54

Symbolic Regression
Setup and Statistics

Setup (similar to Koza’s)
• Population: 500 individuals
• Generations: 51 (or less)
• Probabilities: pcross = 0.9

(α and β segments are uniform over segment sizes)
• Selection: binary tournament

Statistics
• Yield: 99% of runs successful (out of 100)
• Runtime: 30–60 s on dual-core 2.6GHz Opteron
• Memory limits: insignificant w.r.t. runtime

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

32 / 54

Symbolic Regression
Evolved perfect individuals

A perfect solution easily evolves:
(beware of decompiler quirks!)

class SimpleSymbolicRegression_0_7199 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d * d *

num.doubleValue()).doubleValue();
return Double.valueOf(d +

(d = num.doubleValue()) * num.doubleValue());
}

/* Rest of class unchanged */
}

Computes (x + x · x · x) + (x + x · x · x) · x = x(1+ x)(1+ x2)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

33 / 54

Symbolic Regression
Evolved perfect individuals

Another solution:

class SimpleSymbolicRegression_0_2720 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = d; d = d;
double d1 = Math.exp(d - d);
return Double.valueOf(num.doubleValue() *

(num.doubleValue() * (d * d + d) + d) + d);
}

/* Rest of class unchanged */
}

Computes x · (x · (x · x + x) + x) + x = x(1+ x(1+ x(1+ x)))

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

34 / 54

Java Wilderness
Complex Regression

Parameters
• Objective: symbolic regression: x9 + x8 + · · ·+ x2 + x
• Fitness: incremental evaluation,

∑n
i=1 x i , up to n = 9

• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• Worst of generation-0 from simple regression

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

35 / 54

Java Wilderness
Complex Regression

A perfect solution:

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *

d + d) * d + d) * d)
* d) + d) + d) * d);

}

Computes
x +(x · (x · (x +(x +(((x · x + x) · x + x) · x + x) · x) · x)+ x)+ x) · x

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

36 / 54

Java Wilderness
Artificial Ant

Parameters
• Objective: consume all food pellets on Santa Fe trail
• Fitness: number of food pellets consumed
• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• “Avoider” (zero-fitness)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

37 / 54

Java Wilderness
Artificial Ant

Santa Fe Trail:

(a) Initial setup (b) Avoider

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

38 / 54

Java Wilderness
Artificial Ant

A perfect solution:

void step() {
if (foodAhead()) {

move(); right();
}
else {

right(); right();
if (foodAhead())

left();
else {

right(); move();
left();

}
left(); left();

}
}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

39 / 54

Java Wilderness
Intertwined Spirals

Parameters
• Objective: two-class classification of intertwined spirals
• Fitness: number of correctly classified points

Initialization
• Arbitrarily organized repository of building blocks:
floating-point arithmetics, trigonometric functions, and
polar-rectangular coordinates conversion

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

40 / 54

Java Wilderness
Intertwined Spirals

Intertwined spirals:

−1

1
y

−1 1
x

(e) Initial setup (f) Koza’s evolved solution

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

41 / 54

Java Wilderness
Intertwined Spirals

A perfect solution:

Computes the (approximate) sign of
sin
(9
4π

2√x2 + y2 − tan−1 y
x
)
as the class predictor of (x , y)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

42 / 54

Java Wilderness
Intertwined Spirals

Koza’s best-of-run:

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* X X)
(sin (iflte (% Y Y) (% (sin (sin (% Y 0.30400002))) X) (% Y
0.30400002) (iflte (iflte (% (sin (% (% Y (+ X Y))
0.30400002)) (+ X Y)) (% X -0.10399997) (- X Y) (* (+
-0.12499994 -0.15999997) (- X Y))) 0.30400002 (sin (sin
(iflte (% (sin (% (% Y 0.30400002) 0.30400002)) (+ X Y))
(% (sin Y) Y) (sin (sin (sin (% (sin X) (+ -0.12499994
-0.15999997))))) (% (+ (+ X Y) (+ Y Y)) 0.30400002))))
(+ (+ X Y) (+ Y Y))))) (sin (iflte (iflte Y (+ X Y) (- X Y)
(+ Y Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
0.30400002))) X) (% Y 0.30400002) (sin (sin (iflte (iflte
(sin (% (sin X) (+ -0.12499994 -0.15999997))) (% X
-0.10399997) (- X Y) (+ X Y)) (sin (% (sin X) (+
-0.12499994 -0.15999997))) (sin (sin (% (sin X) (+
-0.12499994 -0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (%
Y 0.30400002)))))

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

43 / 54

Java Wilderness
Intertwined Spirals

Our best-of-run:

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atan2(y, b = x) +

-(b = Math.atan2(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -0.0056126487018762772) {

b = Math.atan2(a, -a);
b = Math.atan2(a * c + b, x); b = x;
return false;

}
else
return true;

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

44 / 54

Java Wilderness
Array Sum

Parameters
• Objective: summation of numbers in an input array
• Fitness: differences from actual sums on test inputs
• Time limit: 5000 backward branches

Code instrumentation
• Bytecode is instrumented with calls to time-limit check
• Before each backward branch and method invocation
• Robust and portable technique

Initialization
• “Weird” program that does not compute the sum

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

45 / 54

Java Wilderness
Array Sum

Array sum: array loop solution

int sumlist(int list[]) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {

size = tmp;
sum = sum - (0 - list[tmp]);

}
return sum;

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

46 / 54

Java Wilderness
Array Sum

Array sum: List loop solution

int sumlist(List list) {
int sum = 0;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext();) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)

sum = tmp;
sum = tmp;

}
return sum;

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

47 / 54

Java Wilderness
Array Sum

Array sum: List-recursive solution

int sumlistrec(List list) {
int sum = 0;
if (list.isEmpty())

sum = sum;
else

sum += ((Integer)list.get(0)).intValue() +
sumlistrec(list.subList(1, list.size()));

return sum;
}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

48 / 54

Java Wilderness
The Tale of Alta Del

Parameters
• Objective: learn to play Tic-Tac-Toe
• Fitness: rounds won in single-elimination tournament

Initialization
• Negamax algorithm with α-β pruning and
one of four (plausibly) insidious imperfections

Performance
• All imperfections are easily swept away
(with interesting quirks!)

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

49 / 54

Java Wilderness
The Tale of Alta Del

The Tic-Tac-Toe seed:
1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position[] free = getFreeCells(board);
4 // utility is derived from the number of free cells left
5 if (board.getWinner() != null)
6 alpha = utility(board, free);
7 else if (free.length == 0)
8 alpha = 0 save = false ;

9 else for (Position move: free) {
10 TicTacToeBoard copy = board.clone();
11 copy.play(move.row(), move.col(),
12 copy.getTurn());

13 int utility = - (removed) negamaxAB(copy,

14 -beta, -alpha, false save);
15 if (utility > alpha) {
16 alpha = utility;
17 if (save)
18 // save the move into a class instance field
19 chosenMove = move;
20 if (alpha >= beta beta >= alpha)

21 break;
22 }
23 }
24 return alpha;
25 }

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

50 / 54

Conclusions

Completely unrestricted Java programs can be evolved
(via bytecode)

Loops and recursion are not a problem!

Extant (bad) Java programs can be improved

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

51 / 54

Future Work

• Actively searching for consistent bytecode segments
during compatibility checks

• Class-level evolution: cross-method crossover,
introduction of new methods

• Development of mutation operators
• Applying FINCH to additional hard problems
• Designing an IDE plugin to leverage FINCH
for software engineers

• Applying FINCH to meta-evolution
• Automatic improvement of existing applications:
the realm of extant software

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

52 / 54

Evolving Game Heuristics

• A row of cells: k black pieces, empty cell, k white pieces.

• Pieces move towards the opposite direction, striving to
reverse the initial board situation.

• Pieces can move one step towards the opposite direction,
or jump over one complementary-color piece.

• FINCH successfully evolved a getMove method, solving
the problem consistently and effortlessly.

• Additionally, we had significant progress evolving heuristic
evaluation functions for the game of Connect Four.

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

53 / 54

Evolving Game Heuristics

Evolved program solving the k-empty-k game:
Move getMove(Board board) {

int i = board.findEmpty();
Piece left1 = board.getPlace(i-1);
Piece left2 = board.getPlace(i-2);
Piece right1 = board.getPlace(i+1);
Piece right2 = board.getPlace(i+2);
if (left1 == Piece.BLACK && left2 == Piece.WHITE)

return Move.RIGHT;
if (right2 == Piece.BLACK)

return Move.LEFT;
if (left1 == right2)

return Move.RIGHT;
if (right1 == Piece.BLACK)

return Move.LEFT;
return Move.RIGHT;

}

Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

54 / 54

References

M. Orlov and M. Sipper. Genetic programming in the wild: Evolving unrestricted
bytecode. In G. Raidl et al., editors, Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, July 8–12, 2009,
Montréal Québec, Canada, pages 1043–1050, New York, NY, USA, July
2009. ACM Press. ISBN 978-1-60558-325-9. doi:10.1145/1569901.1570042.

M. Orlov and M. Sipper. Flight of the FINCH through the Java wilderness. IEEE
Transactions on Evolutionary Computation, 15(2):166–182, Apr. 2011.
doi:10.1109/TEVC.2010.2052622.

M. Orlov, C. Bregman, and M. Sipper. Automatic evolution of Java-written game
heuristics. In M. B. Cohen and M. O. Cinnéide, editors, Search Based
Software Engineering: Proceedings of the Third International Symposium,
SSBSE 2011, Szeged, Hungary, September 10–12, 2011, volume 6956 of
Lecture Notes in Computer Science, page 277, Berlin Heidelberg, sep 2011.
Springer-Verlag. ISBN 978-3-642-23715-7.
doi:10.1007/978-3-642-23716-4_30.

http://dx.doi.org/10.1145/1569901.1570042
http://dx.doi.org/10.1109/TEVC.2010.2052622
http://dx.doi.org/10.1007/978-3-642-23716-4_30

	Introduction
	Programs?
	Goals

	Evolution
	Source code
	Parse trees
	Bytecode

	Crossover
	Compatible XO
	Formal Definition

	Experiments
	Symbolic Regression
	Seeding
	Statistics
	Results

	In the Wild
	Complex Regression
	Artificial Ant
	Spirals
	Array Sum
	Tic-Tac-Toe

	Conclusions
	Conclusions
	Future Work

