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GP: Programs or Representations?

“While it is common to describe GP as evolving programs,
GP is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development.”

“It is instead more common to evolve programs
(or expressions or formulae)

in a more constrained and often domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]
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Our Goals

From programs. . .
Evolve actual programs

written in Java

. . . to software!
Improve (existing) software

written in unrestricted Java

Extending prior work
Existing work uses restricted subsets of Java bytecode as
representation language for GP individuals

We evolve unrestricted bytecode
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Let’s Evolve Java Source Code

• Rely on the building blocks in the initial population
• Defining genetic operators is problematic
• How do we define good source-code crossover?

Factorial (recursive)
class F {

int fact(int n) {
int ans = 1;

if (n > 0)
ans = n *

fact( n-1);

return ans;
}

}

⇐

Factorial (iterative)
class F {

int fact(int n) {
int ans = 1;

for (; n > 0; n--)
ans = ans * n;

return ans;
}

}
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Oops

• Source-level crossover typically produces garbage

Factorial (recursive ←−× iterative)
class F {

int fact(int n) {
int ans = 1;

if (n > = 1;
for (; n > 0; n--)

ans = ans * n; n-1);

return ans;
}

}
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Parse Trees

• Maybe we can design better genetic operators?

• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[ ]”∗

〈 statement_block | “;” 〉

 

method_declaration 

modifier 
type identifier ( parameter_list ) 

[ ] 
statement_block 

; 
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Bytecode

Better than parse trees:
Let’s use bytecode!

Java Virtual Machine (JVM)
• Source code is compiled to platform-neutral bytecode
• Bytecode is executed with fast just-in-time compiler
• High-order, simple yet powerful architecture
• Stack-based, supports hierarchical object types
• Not limited to Java!

(Scala, Groovy, Jython, Kawa, Clojure, . . . )
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Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack
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Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code

• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation
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Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
( α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations
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Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Good crossover
α β

pre-stack **AB **AA
post-stack **B **C
depth 3 2

Stack pops “AB”
(2 stop tack frames) are
narrower than “AA”,
whereas stack push “C” is
narrower than “B”

Types hierarchy: C → B → A

(see [Orlov and Sipper, 2009, 2011] for full formal definitions)
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Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Bad crossover
α β

pre-stack **AB **Af
post-stack **B **A
depth 3 2

Stack pops “AB” are not
narrower than “Af”
(B and f are incompatible);
stack push “A” is not
narrower than “B”

Types hierarchy: B → A; f is a float

(see [Orlov and Sipper, 2009, 2011] for full formal definitions)
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Symbolic Regression
As an evolutionary example. . .

Parameters
• Objective: symbolic regression, x4 + x3 + x2 + x
• Fitness: sum of errors on 20 random data points in [−1, 1]
• Input: Number num (a Java type)

Seeding
• Population initialized using seeding

[Langdon and Nordin, 2000]
• Seed population with clones of Koza’s original
worst-of-generation-0

[Koza, 1992]
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Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Original Lisp individual and its tree representation:

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X
X)))))

X

X

X X X

EXP

-

% RLOG

-

SIN

RLOG

*



Evolving
unrestricted
Java software
with FINCH

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

29 / 54

Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Translation to unrestricted Java

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {

double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

}

/* Rest of class omitted */
}

We added a couple of building blocks in the last line
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Symbolic Regression
Setup and Statistics

Setup (similar to Koza’s)
• Population: 500 individuals
• Generations: 51 (or less)
• Probabilities: pcross = 0.9

( α and β segments are uniform over segment sizes)
• Selection: binary tournament

Statistics
• Yield: 99% of runs successful (out of 100)
• Runtime: 30–60 s on dual-core 2.6GHz Opteron
• Memory limits: insignificant w.r.t. runtime
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Symbolic Regression
Evolved perfect individuals

A perfect solution easily evolves:
(beware of decompiler quirks!)

class SimpleSymbolicRegression_0_7199 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d * d *

num.doubleValue()).doubleValue();
return Double.valueOf(d +

(d = num.doubleValue()) * num.doubleValue());
}

/* Rest of class unchanged */
}

Computes (x + x · x · x) + (x + x · x · x) · x = x(1+ x)(1+ x2)
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Symbolic Regression
Evolved perfect individuals

Another solution:

class SimpleSymbolicRegression_0_2720 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = d; d = d;
double d1 = Math.exp(d - d);
return Double.valueOf(num.doubleValue() *

(num.doubleValue() * (d * d + d) + d) + d);
}

/* Rest of class unchanged */
}

Computes x · (x · (x · x + x) + x) + x = x(1+ x(1+ x(1+ x)))
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Java Wilderness
Complex Regression

Parameters
• Objective: symbolic regression: x9 + x8 + · · ·+ x2 + x
• Fitness: incremental evaluation,

∑n
i=1 x i , up to n = 9

• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• Worst of generation-0 from simple regression
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Java Wilderness
Complex Regression

A perfect solution:

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *

d + d) * d + d) * d)
* d) + d) + d) * d);

}

Computes
x +(x · (x · (x +(x +(((x · x + x) · x + x) · x + x) · x) · x)+ x)+ x) · x
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Java Wilderness
Artificial Ant

Parameters
• Objective: consume all food pellets on Santa Fe trail
• Fitness: number of food pellets consumed
• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• “Avoider” (zero-fitness)
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Java Wilderness
Artificial Ant

Santa Fe Trail:

(a) Initial setup (b) Avoider
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Java Wilderness
Artificial Ant

A perfect solution:

void step() {
if (foodAhead()) {

move(); right();
}
else {

right(); right();
if (foodAhead())

left();
else {

right(); move();
left();

}
left(); left();

}
}
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Java Wilderness
Intertwined Spirals

Parameters
• Objective: two-class classification of intertwined spirals
• Fitness: number of correctly classified points

Initialization
• Arbitrarily organized repository of building blocks:
floating-point arithmetics, trigonometric functions, and
polar-rectangular coordinates conversion
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Java Wilderness
Intertwined Spirals

Intertwined spirals:

−1

1
y

−1 1
x

(e) Initial setup (f) Koza’s evolved solution
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Java Wilderness
Intertwined Spirals

A perfect solution:

Computes the (approximate) sign of
sin
(9
4π

2√x2 + y2 − tan−1 y
x
)
as the class predictor of (x , y)
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Java Wilderness
Intertwined Spirals

Koza’s best-of-run:

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* X X)
(sin (iflte (% Y Y) (% (sin (sin (% Y 0.30400002))) X) (% Y
0.30400002) (iflte (iflte (% (sin (% (% Y (+ X Y))
0.30400002)) (+ X Y)) (% X -0.10399997) (- X Y) (* (+
-0.12499994 -0.15999997) (- X Y))) 0.30400002 (sin (sin
(iflte (% (sin (% (% Y 0.30400002) 0.30400002)) (+ X Y))
(% (sin Y) Y) (sin (sin (sin (% (sin X) (+ -0.12499994
-0.15999997))))) (% (+ (+ X Y) (+ Y Y)) 0.30400002))))
(+ (+ X Y) (+ Y Y))))) (sin (iflte (iflte Y (+ X Y) (- X Y)
(+ Y Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
0.30400002))) X) (% Y 0.30400002) (sin (sin (iflte (iflte
(sin (% (sin X) (+ -0.12499994 -0.15999997))) (% X
-0.10399997) (- X Y) (+ X Y)) (sin (% (sin X) (+
-0.12499994 -0.15999997))) (sin (sin (% (sin X) (+
-0.12499994 -0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (%
Y 0.30400002)))))
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Java Wilderness
Intertwined Spirals

Our best-of-run:

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atan2(y, b = x) +

-(b = Math.atan2(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -0.0056126487018762772) {

b = Math.atan2(a, -a);
b = Math.atan2(a * c + b, x); b = x;
return false;

}
else
return true;

}
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Java Wilderness
Array Sum

Parameters
• Objective: summation of numbers in an input array
• Fitness: differences from actual sums on test inputs
• Time limit: 5000 backward branches

Code instrumentation
• Bytecode is instrumented with calls to time-limit check
• Before each backward branch and method invocation
• Robust and portable technique

Initialization
• “Weird” program that does not compute the sum
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Java Wilderness
Array Sum

Array sum: array loop solution

int sumlist(int list[]) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {

size = tmp;
sum = sum - (0 - list[tmp]);

}
return sum;

}
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Java Wilderness
Array Sum

Array sum: List loop solution

int sumlist(List list) {
int sum = 0;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext(); ) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)

sum = tmp;
sum = tmp;

}
return sum;

}
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Java Wilderness
Array Sum

Array sum: List-recursive solution

int sumlistrec(List list) {
int sum = 0;
if (list.isEmpty())

sum = sum;
else

sum += ((Integer)list.get(0)).intValue() +
sumlistrec(list.subList(1, list.size()));

return sum;
}
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Java Wilderness
The Tale of Alta Del

Parameters
• Objective: learn to play Tic-Tac-Toe
• Fitness: rounds won in single-elimination tournament

Initialization
• Negamax algorithm with α-β pruning and
one of four (plausibly) insidious imperfections

Performance
• All imperfections are easily swept away
(with interesting quirks!)
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Java Wilderness
The Tale of Alta Del

The Tic-Tac-Toe seed:
1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position[] free = getFreeCells(board);
4 // utility is derived from the number of free cells left
5 if (board.getWinner() != null)
6 alpha = utility(board, free);
7 else if (free.length == 0)
8 alpha = 0 save = false ;

9 else for (Position move: free) {
10 TicTacToeBoard copy = board.clone();
11 copy.play(move.row(), move.col(),
12 copy.getTurn());

13 int utility = - (removed) negamaxAB(copy,

14 -beta, -alpha, false save );
15 if (utility > alpha) {
16 alpha = utility;
17 if (save)
18 // save the move into a class instance field
19 chosenMove = move;
20 if ( alpha >= beta beta >= alpha )

21 break;
22 }
23 }
24 return alpha;
25 }
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Conclusions

Completely unrestricted Java programs can be evolved
(via bytecode)

Loops and recursion are not a problem!

Extant (bad) Java programs can be improved
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Future Work

• Actively searching for consistent bytecode segments
during compatibility checks

• Class-level evolution: cross-method crossover,
introduction of new methods

• Development of mutation operators
• Applying FINCH to additional hard problems
• Designing an IDE plugin to leverage FINCH
for software engineers

• Applying FINCH to meta-evolution
• Automatic improvement of existing applications:
the realm of extant software
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Evolving Game Heuristics

• A row of cells: k black pieces, empty cell, k white pieces.

• Pieces move towards the opposite direction, striving to
reverse the initial board situation.

• Pieces can move one step towards the opposite direction,
or jump over one complementary-color piece.

• FINCH successfully evolved a getMove method, solving
the problem consistently and effortlessly.

• Additionally, we had significant progress evolving heuristic
evaluation functions for the game of Connect Four.
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Evolving Game Heuristics

Evolved program solving the k-empty-k game:
Move getMove(Board board) {

int i = board.findEmpty();
Piece left1 = board.getPlace(i-1);
Piece left2 = board.getPlace(i-2);
Piece right1 = board.getPlace(i+1);
Piece right2 = board.getPlace(i+2);
if (left1 == Piece.BLACK && left2 == Piece.WHITE)

return Move.RIGHT;
if (right2 == Piece.BLACK)

return Move.LEFT;
if (left1 == right2)

return Move.RIGHT;
if (right1 == Piece.BLACK)

return Move.LEFT;
return Move.RIGHT;

}
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