
Accuracy-Aware

Program

Transformations

Sasa Misailovic

MIT CSAIL

Collaborators

Martin Rinard, Michael Carbin,

Stelios Sidiroglou, Henry Hoffmann,

Deokhwan Kim, Daniel Roy,

Zeyuan Allen Zhu, Michael Kling,

Jonathan Kelner, Anant Agarwal

Emerging Software and Hardware

Emerging Software and Hardware

Big Data; Approximate

Emerging Software and Hardware

Energy ConsciousBig Data; Approximate

Emerging Software and Hardware

Energy Conscious

Automatically Transform

Computations to Trade

Accuracy for Performance

and Energy

Big Data; Approximate

Solving Problems with Transformations

Data center

needs to draw

less power

Voltage drops, clock

ticks slower, start

missing deadlines

Program is

taking too

long to run

System gets

loaded, start

missing deadlines

Hand held needs

to go longer

between charges

Lose cores,

start missing

deadlines

Automatically Transform

Computations to Trade

Accuracy for Performance

and Energy

Consider This Transformation

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Loop Perforation

Effects:

 Should improve performance

 Broadly applicable

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Loop Perforation

Common Reaction:

But it changes the program semantics!

The result will be wrong ?!

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Loop Perforation

Common Reaction:

But it changes the program semantics!

The result will be wrong ?!

The result can be less accurate!

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Acceptability =

Accuracy + Integrity

Acceptability =

Accuracy + Integrity

Optimization problem:

minimize execution time given constraints on

accuracy and integrity of the computation

Optimization Inputs

Original

Program

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Input &

Accuracy

Specification

Program

Transformation

Optimization Framework

• Find Candidates

for Transformation

• Analyze Effects of the

Transformations

• Navigate Tradeoff Space

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

ccc

Error

Time

ccc

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Error

Time

ccc

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Time

Error

Time

Error

Time

Error

Property: the result of the optimized

program is within the specified

error bound

Query: Return the program that

executes in minimal time

Find Transformation Candidates:

• Profile program to find time-consuming for loops

Analyze the Effects of Perforation:

• Integrity: memory safety, well formed output

• Performance: Compare execution times

• Accuracy: Compare the quality of the results

Navigate Tradeoff Space:

• Combine multiple perforatable loops

Prioritize loops by their individual performance and accuracy

Greedy or Exhaustive Search with Pruning

Explicit Search Algorithm for Perforation

Accuracy Analysis of Computation

c

Input

Original

Program Output

Output Abstraction

(Application-Specific)

Transformed

Program

Difference Bound

δ<

Analysis for Individual Loop Perforation

1. Perforate one time-consuming loop at a time

2. Execute perforated program

3. Filter out critical loops:

a) Program crashes

b) Accuracy loss > δmax

c) Execution slows down

d) Latent memory errors (Valgrind)

4. Repeat 1-3 for all loops, inputs, perforation rates

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Individual Loop Perforation Results

0

5

10

15

20

25

30

35

40

Perforatable

Latent Errors

Bad Speedup

Bad Accuracy

Crash

#
 l
o
o
p
s

From [ICSE 2010]

Percentage of Work Done

in Perforatable Loops

0

20

40

60

80

100

120

%
 i
n
st

ru
ct

io
n
s

Performance Increase of the Top

Perforatable Loop (Relative Error < 0.1)

1

1.2

1.4

1.6

1.8

2

2.2

Sp
e
e
d
u
p

Result Interpretation

Manual inspection of perforatable computations:

x264: motion estimation

bodytrack: MCMC

swaptions: Monte Carlo simulation

ferret: similarity hashing

blackscholes: redundant computation

canneal: simulated annealing

streamcluster: cluster center search

Common: Approximate/heuristic computations

x264 Cumulative Loop Scores
M

e
a
n
 N

o
rm

a
liz

e
d
 T

im
e

Accuracy loss

From [FSE 2011]

x264 Cumulative Loop Scores
M

e
a
n
 N

o
rm

a
liz

e
d
 T

im
e

Accuracy loss

From [FSE 2011]

Status

Good:

Profitable accuracy/performance tradeoffs

Matches the approximate computations

But:

No guarantees on accuracy

No guarantees on safety

How to improve it?

How often large errors happen?

What safety guarantees can we provide?

Reasoning About Transformed Programs

Accuracy

Probabilistic Reasoning
[SAS ’11, POPL ‘12]

(with Z. Zhu, J. Kelner, D. Roy, M. Rinard)

Integrity

Relational Logic Reasoning
[PLDI ‘12, PEPM ‘13]

(with M. Carbin, D. Kim, M. Rinard)

…

… … … …

• Nodes represent computation

• Edges represent flow of data

From [POPL ‘12]

…

• Functions – process individual data

• Reduction nodes – aggregate data

… … … …

…

min

avgavg avgavg

• Functions – process individual data

• Reduction nodes – aggregate data

… … … …

…

min

avgavg avgavg

Function substitution
• Multiple implementations

• Each has expected error/time (𝐸, 𝑇)

f2 f3f1

… … … …

…

min

avgavg avgavg

Function substitution
• Multiple implementations

• Each has expected error/time (𝐸, 𝑇)

… … … …

…

min

avgavg avgavg

Function substitution
• Inputs of functions have specified ranges

• Each function has Lipschitz property

… … … …

[a,b] [c,d] [a,b] [c,d] [a,b] [c,d]… … …[a,b] [c,d]

Sampling inputs of reduction nodes

• Reductions consume fewer inputs

…

min

avgavg avgavg

… … … …

…

min

avgavg

Sampling inputs of reduction nodes

• Reductions consume fewer inputs

… … … …

Search for Optimized Programs

Time Property: With high probability

the result of the optimized program

is within the specified error bound

Error

Search for Optimized Programs

Time Property: With high probability

the result of the optimized program

is within the specified error bound

Error

𝐏𝐫 𝐑𝐞𝐬 − 𝐑𝐞𝐬′ < 𝐁 > 𝟏 − 𝛅

Search for Optimized Programs

Time Property:

Query: Generate randomized program

that executes in minimal time

Error

𝐏𝐫 𝐑𝐞𝐬 − 𝐑𝐞𝐬′ < 𝐁 > 𝟏 − 𝛅

Find Transformation Candidates:

• User provides function implementations and specs

Analyze Transformed Computations:

• Construct analytic expressions for (1) performance
and (2) error emergence and propagation

• Variables: probabilities of executing alternate versions

Navigate Tradeoff Space:

• Construct mathematical optimization problem:

Using expressions for performance and error

• Non-linear Non-convex tradeoff space:

1 + 𝜀 -approximation of globally optimal tradeoff curve

Constraint Based Search Algorithm

From [POPL ‘12]

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

min

1

n

n n

avg avg

m m

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

min

1

n

n n

avg avg

m m

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

min

1

n

n n

avg

m

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

min

1

n

n n

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

min

1

n

Divide and conquer

• For each subcomputation

construct tradeoff curve

• Dynamic programming

Properties

• Polynomial time

• 1 + 𝜀 -approximation of

true tradeoff curve

Tradeoff Curve Construction Algorithm

Comparison With Explicit Search

Finite vs Infinite Size Search Space

Input vs Declarative Specification Based

General vs Restricted Model of Computation

Related Work

Other Accuracy-aware Transformations We Explored:

• Task Skipping [Rinard ICS ‘06, Rinard OOPSLA ’07]

• Loop Parallelization with Data Races [TECS PEC ’12, RACES ‘12]

• Dynamic Knobs [ASPLOS ‘11]

Our group has also been working on transformations to prevent
otherwise fatal errors (segmentation faults, infinite loops, buffer
overflows, SQL injection attacks)

More Accuracy-aware Transformations Researchers Explored:

• Unreliable Data Stores [Liu et al ASPLOS ‘11, Sampson et al PLDI ’11]

• Multiple Implementations [Ansel et al PLDI ‘09, Chilimbi et al PLDI ’10]

• Approximate Memoization [Chaudhuri et al FSE ’11]

Takeaway

Emerging trend of computations on large data sets

Accuracy-aware transformations are powerful tool

• Improve performance

• Reduce power

• Facilitate dynamic adaptation

Interaction of program analysis and search techniques

to find profitable, safe, and predictable tradeoffs

