
1

Living with change and uncertainty, and the quest
for incrementality

27th CREST/DAASE Open Workshop
Dynamic Adaptive Automated Search Based Software Engineering

London, April 2013

Carlo Ghezzi
Politecnico di Milano

Deep-SE Group @ DEIB

Tuesday, June 4, 13

2

Acknowledgements
• The work discussed here has been mostly developed thanks to a

funding from the European Research Council (Advanced Grant
IDEAS-ERC, Project 227977---SMScom)

• ...and thanks to

Tuesday, June 4, 13

3

The vision

• Software everywhere
‣ world fully populated by computationally rich devices

(disappearing computer)
– appliances, sensors/actuators, ... “things”

• Cyber-physical systems
‣ built from and depending upon synergy of computational and

physical components
• Mobility and situation-awareness
‣ new behaviors emerge dynamically in a situation-dependent

manner
• Continuously running systems
‣ need to evolve while they offer service

Tuesday, June 4, 13

4

The challenge

• Continuous change, uncertainty
‣ in the requirements
‣ in the environment
‣ in the platform
- cloud and service infrastructures

• Dependability
‣ high assurance

★Change and flexibility adversary of dependability
★Can they be reconciled through a disciplined approach?

•
Tuesday, June 4, 13

The questions

• Are the traditional software paradigms still valid?
• What is new or different?

5

... and the answers

• The way software is developed and run has to change quite radically
• We made development time agile/iterative, but this is not enough
• The traditional separation between development time and run time

must be broken

Tuesday, June 4, 13

Understanding
change and uncertainty

6

Tuesday, June 4, 13

The global picture:
	
 the machine and the world

7

Tuesday, June 4, 13

The global picture:
	
 the machine and the world

7

Goals
Requirements

Tuesday, June 4, 13

The global picture:
	
 the machine and the world

7

Goals
Requirements

Domain
properties
(assumptions)

Tuesday, June 4, 13

The global picture:
	
 the machine and the world

7

Goals
Requirements

Domain
properties
(assumptions)

Specification

Tuesday, June 4, 13

Domain assumptions

8

“Domain assumptions bridge the
gap between requirements and
specifications”
(M. Jackson & P. Zave)

May concern
• usage profiles
• users’ responsiveness
• remote servers response time
• network latency
• sensors/actuators behaviors
• . . .

Change and uncertainty

Tuesday, June 4, 13

Dependability arguments

• Assume you have a formal representation for
– R = requirements
– S = specification
– D = domain assumptions

	
 if S and D are both satisfied and consistent, it is
necessary to prove

– S, D |= R

9

Tuesday, June 4, 13

The role of (formal) models

• The formal representations of D and S are often given
in terms of models (e.g., state machines)

• Dependability arguments are based on proofs that the
models satisfy R

• For example, model checking may be used at design
time to assess dependability

10

Tuesday, June 4, 13

Cyber-physical systems

• Network of computational elements interacting with
environment

• Changes/uncertainty in goals/requirements
• Changes/uncertainty in domain assumptions

– concerning the physical environment
– other computational elements

• Some changes can be anticipated, others cannot
• Changes lead to software evolution
• Adaptation (as a special case of evolution)

– the system can self-organize its reaction to anticipated
changes (in environment)

11

Tuesday, June 4, 13

Changes may affect dependability

• Changes may concern
• R
• D (our focus here)

• We can decompose D into Df and Dc

– Df is the fixed/stable part

– Dc is the changeable part

We need to detect changes to Dc

and make changes to S (and to the implementation) to
keep satisfying R

12

S, D |= R

Tuesday, June 4, 13

Terminology

• Changes are the perceived difference between the
expected behavior and the materialized behavior

• They cause an evolution in the software to keep the
requirements satisfied

• (Self-)adaptation: evolution is self-managed by the
software (also, on-line adaptation)

• It may require human intervention (maintenance) to
evolve the software off-line

• It may still be possible to install off-line modifications
while the application is running

13

Tuesday, June 4, 13

Software evolution revisited

• Software evolution recognized as a crucial problem since
the 1970’s (work by L. Belady and M. Lehman)

- they proposed “laws” of sw evolution
• Viewed as a problem to be managed off-line and mainly as

a software development problem
• What is new here

– the unprecedented intensity of change/uncertainty
– the request that software responds to changes while

the system is running, possibly in a self-managed manner

14

Tuesday, June 4, 13

Software paradigm shift
• Conventional separation between development time

and run time is blurring
• Models + requirements need to be kept + updated at

run time (systems need to be reflective)
• Continuous verification must be performed to detect

the need for evolution

15

Env

	
	 F(S=OK)

R. Calinescu, C. Ghezzi, M. Kwiatkokwska, R. Mirandola, “Self-adaptive software needs
quantitative verification at runtime”, Comm. ACM, Sept. 2012

Tuesday, June 4, 13

Paradigm shift:
rethink run-time environments

• Traditionally software engineering mostly concerned
with development time, clearly separated from run time

• The result is code that simply needs to be run
• (Self-)adaptive software requires much more

- the deployed software must be reflective, able to reason
about itself and the environment
✓ models
✓ goals and requirements
✓ strategies

- agility becomes a run-time objective

16

Tuesday, June 4, 13

KAMI: a framework for self-
adaptation

17

• [ICSE 2009] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli,
"Model Evolution by Run-Time Parameter Adaptation”

• [RE 2009] C. Ghezzi, G. Tamburrelli, "Reasoning on Non
Functional Requirements for Integrated Services”

• [FSE 2010] I. Epifani, C. Ghezzi, G. Tamburrelli, "Change-Point
Detection for Black-Box Services”

Tuesday, June 4, 13

Specific focus
• Non-functional requirements

– reliability, performance, energy consumption, cost, …

• Quantitatively stated in probabilistic terms
• Dc decomposed into Du , Ds

– Du = usage profile

– Ds = S1 ∧ ∧ Sn Si assumption on i-th service

18

?
System under
development

?
?
?

?

???
Hard to estimate at
design time +
very likely to change
at run time

Tuesday, June 4, 13

Our approach in a nutshell

19

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Implementation

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Implementation

Execution

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Implementation Monitoring

Execution

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Implementation Monitoring

Execution

Reasoning

Tuesday, June 4, 13

Our approach in a nutshell

19

Reqs

Formalization E1

0

Implementation Monitoring

Execution

Reasoning

Tuesday, June 4, 13

Models

• Different models provide different viewpoints from
which a system can be analyzed

• Focus on non-functional properties and quantitative
ways to deal with uncertainty

• Use of Markov models
– DTMCs for reliability
– CTMCs for performance
– Reward DTMCs for energy/cost/...

20

Tuesday, June 4, 13

Using verification for change
detection and adaptation

21

Tuesday, June 4, 13

Using verification for change
detection and adaptation

21

Users
classified as BigSpender

or SmallSpender based on their
usage profile.

Tuesday, June 4, 13

Using verification for change
detection and adaptation

21

3 probabilistic requirements:
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

Users
classified as BigSpender

or SmallSpender based on their
usage profile.

Tuesday, June 4, 13

Assumptions

22

User profile domain knowledge

External service assumptions (reliability)

Tuesday, June 4, 13

DTMC model

23

5

Tuesday, June 4, 13

DTMC model

23

Property check via model checking
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

5

Tuesday, June 4, 13

DTMC model

23

Property check via model checking
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

 0.84

5

Tuesday, June 4, 13

DTMC model

23

Property check via model checking
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

 0.84

0.031

5

Tuesday, June 4, 13

DTMC model

23

Property check via model checking
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

 0.84

0.056
0.031

5

Tuesday, June 4, 13

What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the updated DTMC

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24

Tuesday, June 4, 13

What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the updated DTMC

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24

Tuesday, June 4, 13

What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the updated DTMC

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24

A-priori Knowledge

Tuesday, June 4, 13

What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the updated DTMC

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24

A-priori Knowledge A-posteriori Knowledge

Tuesday, June 4, 13

In our example

25

Tuesday, June 4, 13

In our example

25

R2: “Probability of an ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”

Tuesday, June 4, 13

In our example

25

0.067

R2: “Probability of an ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”

Tuesday, June 4, 13

In our example

25

0.067

R2: “Probability of an ExpShipping failure for a user recognized as
	
 BigSpender < 0.035”

Requirement
violated!

Tuesday, June 4, 13

26

The problem

• Verification subject to (application-dependent) hard
real-time requirements

• Running the model checker after any change
impractical in most realistic cases

• But changes are often local, they do not disrupt the
entire specification

• Can they be handled in an incremental fashion?
• This requires revisiting verification procedures!

Tuesday, June 4, 13

Run-time agility, incrementality
• Agility taken to extremes

- time boundaries shrink
✓ constrained by real-time requirements

• Verification approaches must be re-visited
- they must be incremental

Given S system (model), P property to verify for S
Change = new pair S’, P’
Incremental verification reuses part of the proof of
S against P to verify S’ against P’

27

Tuesday, June 4, 13

Incrementality by parameterization

• Requires anticipation of changing parameters
• The model is partly numeric and partly symbolic
• Evaluation of the verification condition requires

partial evaluation (mixed numerical/symbolic
processing)

• Result is a formula (polynomial for reachability on
DTMCs)

• Evaluation at run time substitutes actual values to
symbolic parameters

28

Tuesday, June 4, 13

Incrementality by parameterization

• Requires anticipation of changing parameters
• The model is partly numeric and partly symbolic
• Evaluation of the verification condition requires

partial evaluation (mixed numerical/symbolic
processing)

• Result is a formula (polynomial for reachability on
DTMCs)

• Evaluation at run time substitutes actual values to
symbolic parameters

28

Working m
om paradigm

Cook fir
st

Warm
-up la

ter

Tuesday, June 4, 13

Working mom paradigm

29

D
es

ig
n-

T
im

e
(o

ffl
in

e)
R

un
-T

im
e

(o
nl

in
e)

Analyzable properties: reliability, costs (e.g., energy consumption)

Tuesday, June 4, 13

Working mom paradigm

29

D
es

ig
n-

T
im

e
(o

ffl
in

e)
R

un
-T

im
e

(o
nl

in
e)

E1

0

Analyzable properties: reliability, costs (e.g., energy consumption)

Tuesday, June 4, 13

Working mom paradigm

29

D
es

ig
n-

T
im

e
(o

ffl
in

e)
R

un
-T

im
e

(o
nl

in
e)

Partial
evaluation

E1

0

Analyzable properties: reliability, costs (e.g., energy consumption)

Tuesday, June 4, 13

Working mom paradigm

29

D
es

ig
n-

T
im

e
(o

ffl
in

e)
R

un
-T

im
e

(o
nl

in
e)

Partial
evaluation

E1

0

Analyzable properties: reliability, costs (e.g., energy consumption)

Tuesday, June 4, 13

Working mom paradigm

29

D
es

ig
n-

T
im

e
(o

ffl
in

e)
R

un
-T

im
e

(o
nl

in
e)

Partial
evaluation

Parameter
values

E1

0

Analyzable properties: reliability, costs (e.g., energy consumption)

Tuesday, June 4, 13

Back to the example

30

r = 0.85− 0.85 ⋅ x + 0.15 ⋅ z− 0.15 ⋅ x ⋅ z− y ⋅ x
0.85+ 0.15 ⋅ z

r = Pr(◊ s = 5)> r

Tuesday, June 4, 13

31

Matlab
Prism
MRMC
WM

T
im

e
(u

s)

103

104

105

106

Model size (# states)
50 100 150 200 250 300 350 400 450 500

Run-time verification

Tuesday, June 4, 13

32

The WM approach

• Assumes that the Markov model contains absorbing
states, and that they are reachable

• Works by symbolic/numeric matrix manipulation
• Resulting formula for reachability properties is

polynomial
• All of (R) PCTL covered
• Expensive design-time partial evaluation, fast run-

time verification
- symbolic matrix multiplications, but very sparse

and normally only few variables

Tuesday, June 4, 13

33

Further advantage of WM

• Because reachability properties can be expressed via
polynomial functions, it is also possible to compute
their (partial) derivative and perform sensitivity
analysis

- Which parameters affect most the global quality in
the current operation point?

• Similar approach can deal also with rewards
- Energy consumption, Average Execution time,

Outsourcing cost, CPU time, Bandwidth

Tuesday, June 4, 13

34

More on example

Cost units:����$

Tuesday, June 4, 13

34

16

Buy

8

Search

6

ns

NrmShipping

es

1

Logout

0

End

2

Login

Ps

Pns

ExpShipping

Pes

CheckOut

More on example

Cost units:����$

Tuesday, June 4, 13

34

16

Buy

8

Search

6

ns

NrmShipping

es

1

Logout

0

End

2

Login

Ps

Pns

ExpShipping

Pes

CheckOut

More on example

Cost units:����$What’s the average cost
of a session?

Tuesday, June 4, 13

35

WM for Reward-DTMC

Tuesday, June 4, 13

35

Cook first:

WM for Reward-DTMC

Tuesday, June 4, 13

35

Cook first:

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

WM for Reward-DTMC

Tuesday, June 4, 13

35

Cook first:

Warm-up later:

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

WM for Reward-DTMC

Tuesday, June 4, 13

35

Cook first:

Warm-up later:

{4W = �.�, 4RW = �.��, 4IW = �.��, RW = ��, IW = ��}

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

WM for Reward-DTMC

Tuesday, June 4, 13

35

Cook first:

Warm-up later:

{4W = �.�, 4RW = �.��, 4IW = �.��, RW = ��, IW = ��}

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

Evaluate rational expression

=� \PSKMR = ��.���

WM for Reward-DTMC

Tuesday, June 4, 13

36

More on incremental verification

• A must to move verification at run-time
• Also key to support development processes that are

agile/iterative
- they normally reject formal specification/

verification because they are viewed as responsible
for rigid, inflexible development

• Through incrementality, formal specification/
verification can be reconciled with agility

Tuesday, June 4, 13

37

A general traditional approach:
assume-guarantee

• Resorts on modularity
• Applies assume-guarantee reasoning

- System is viewed as a parallel composition of
modules, each of which has to guarantee a certain
property (its contract)
✓ we show that module M1 guarantees properties

P1 on the assumption that module M2
guaranties P2 , and vice versa for M2 , and then
claim that the system composed of M1 and M2
(i.e., both running and interacting together)
guarantees P1 and P2 unconditionally

Tuesday, June 4, 13

38

More on incremental
verification

A. Molzam Sharifloo, P. Spoletini,
LOVER: Light-Weight fOrmal Verification of adaptivE Systems at Run Time,
Formal Aspects of Component Software, LNCS, 2013

C. Ghezzi, C. Menghi, A. Molzam Sharifloo, P. Spoletini
On Requirements Verification for Model Refinements, accepted RE 2013

Tuesday, June 4, 13

http://link.springer.com/book/10.1007/978-3-642-35861-6
http://link.springer.com/book/10.1007/978-3-642-35861-6

39

Incremental verification of state
machines against functional properties

• Partial LTSs against CTL
- a state (in general, a subgraph) can be un-specified
★we can compute the property P^-- the

constraint that needs to be satisfied by the un-
specified fragment so that the entire LTS satisfies
a property P

• The un-specified portion is the one that may change;
constraints are the pre-computed property that
needs to be verified on the portion

Tuesday, June 4, 13

How to make verification incremental

Syntax-driven incrementality
• Assumes that artifact to analyze has a

syntactic structure expressible as a
formal grammar

• Verification is expressed via
attributes (à la Knuth)

• Changes can be of any kind

40

Tuesday, June 4, 13

Intuition

41

Syntax-driven incrementality
• Incremental parsing strategy finds

boundary for artifact re-analysis
• Knuth proved that attributes can be only

synthesized (computed bottom-up) and
thus only need to be recomputed for the
changed portion + propagated to the root
node

Tuesday, June 4, 13

Incremental parsing: intuition

• Assume w is the modified portion
• Ideally, re-analyze only a sub-tree “covering” w, rooted in <N>,

and “plug-it-in” the unmodified portion of tree
• The technique works if the sub-tree is small, and complexity of

re-analysis is the same as complexity of “main” algorithm

42

hSi

hN i

xwz

Tuesday, June 4, 13

Incremental parsing:
	
 	
 past and new results

• Past work on incremental parsing
- C. Ghezzi, D. Mandrioli, Incremental parsing, ACM Trans. Program. Lang. Systems, 1979
- C. Ghezzi, D. Mandrioli, “Augmenting parsers to support incrementality”, Journal of the ACM, 1980

✓ Saves the maximum possible portion of the syntax tree, but the
re-analyzed portion can still be large in certain cases

• Recent work resurrected Floyd’s operator precedence grammars
- R. W. Floyd. Syntactic analysis and operator precedence, Journal of the ACM, 1963
- S. Crespi Reghizzi and D. Mandrioli. Operator-precedence and the visibly pushdown property,

J. Comput. Syst. Sci., to appear.

- Floyd’s grammars cannot generate all deterministic CF languages
- but in practice any programming language can be described by a

Floyd grammar
- parsing can be started from any arbitrary point of the artifact to be

analyzed; it can work in parallel

43

Tuesday, June 4, 13

Initial validation of the approach

• Case 1: reliability (QoS) analysis of composite workflows
- a (BPEL) workflow integrates external Web services

having given reliability and we wish to assess reliability of
composition

- if reliability of an external service changes, does our
property about reliability of composition change?
✓ our previous work framed this into probabilistic model

checking
✓ here we can deal with unrestricted changes, also in the

workflow in a very efficient way

44

Tuesday, June 4, 13

Initial validation of the approach

• Case 2: reachability analysis as supported by program
model checking

- given a program and a safety property, is there an
execution of the program that leads to a violation of
the property?

- if the program changes, how does our property
change?
✓ similar problem faced by Henzinger et al.
• T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido. Extreme model

checking. In Verification: Theory and Practice, volume 2772 of LNCS, 2004.

45

Tuesday, June 4, 13

46

Other research directions
• Adaptation via control theory

• Dynamic software update

• Model inference techniques

A. Filieri, C. Ghezzi, A. Leva, M. Maggio, Self-Adaptive Software Meets Control Theory:
A preliminary Approach Supporting Reliability Requirements, ASE 2011

A. Filieri, C. Ghezzi, A. Leva, M. Maggio
Reliability-driven dynamic binding via feedback control, SEAMS 2012

C. Ghezzi, A. Mocci, M. Monga
Synthesizing Intensional Behavior Models by Graph Transformation (ICSE 2009)

C. Ghezzi, A. Mocci, G. Salvaneschi
Automatic Cross Validation of Multiple Specifications: A Case Study (FASE 2010)

C. Ghezzi, A. Mocci: Behavioral validation of JFSL specifications through
model synthesis (ICSE 2012)

X, Ma, L, Baresi, C, Ghezzi, V. Panzica La Manna, and J. Lu, Version-consistent Dynamic
Reconfiguration of Component-based Distributed Systems, ESEC/FSE 2011

C. Ghezzi, J. Greenyer, V. Panzica La Manna, Synthesizing Dynamically Updating
Controllers from Changes in Scenario-based Specifications, SEAMS 2012

V. Panzica La Manna, , J. Greenyer, C. Ghezzi, C. Brenner, Formalizing Correctness
Criteria of Dynamic Updates Derived from Specification Changes, SEAMS 2013

Tuesday, June 4, 13

47

Tunable DTMC model

3 kinds of transitions: fixed, observable, controllable

Tuesday, June 4, 13

48

Questions?

Tuesday, June 4, 13

