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The vision

• Software everywhere
‣ world fully populated by computationally rich devices 

(disappearing computer) 
– appliances, sensors/actuators, ... “things”

• Cyber-physical systems
‣ built from and depending upon synergy of computational and 

physical components
• Mobility and situation-awareness
‣ new behaviors emerge dynamically in a situation-dependent 

manner
• Continuously running systems
‣ need to evolve while they offer service
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The challenge

• Continuous change, uncertainty
‣ in the requirements
‣ in the environment
‣ in the platform
- cloud and service infrastructures

• Dependability
‣ high assurance

★Change and flexibility adversary of dependability
★Can they be reconciled through a disciplined approach?

•
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The questions

• Are the traditional software paradigms still valid?
• What is new or different?

5

...  and the answers

• The way software is developed and run has to change quite radically
• We made development time agile/iterative, but this is not enough 
• The traditional separation between development time and run time 

must be broken
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Understanding
change and uncertainty
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The global picture: 
	
 the machine and the world
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Domain assumptions
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“Domain assumptions bridge the                                                     
gap between requirements and                                
specifications” 
(M. Jackson & P. Zave)

May concern
• usage profiles
• users’ responsiveness
• remote servers response time
• network latency
• sensors/actuators behaviors
• . . .

Change and uncertainty
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Dependability arguments

• Assume you have a formal representation for
– R = requirements
– S = specification
– D = domain assumptions

	
 if S and D are both satisfied and consistent, it is 
necessary to prove

– S, D |= R

9
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The role of (formal) models

• The formal representations of D and S are often given 
in terms of models (e.g., state machines)

• Dependability arguments are based on proofs that the 
models satisfy R

• For example, model checking may be used at design 
time to assess dependability

10
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Cyber-physical systems

• Network of computational elements interacting with 
environment

• Changes/uncertainty in goals/requirements
• Changes/uncertainty in domain assumptions

– concerning the physical environment
– other computational elements

• Some changes can be anticipated, others cannot
• Changes lead to software evolution
• Adaptation (as a special case of evolution)

– the system can self-organize its reaction to anticipated 
changes (in environment)

11
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Changes may affect dependability

• Changes may concern
• R 
• D (our focus here)

• We can decompose D into Df  and Dc 

– Df is the fixed/stable part

– Dc is the changeable part

We need to detect changes to Dc 

and make changes to S (and to the implementation) to 
keep satisfying R

12

S, D |= R
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Terminology

• Changes are the perceived difference between the 
expected behavior and the materialized behavior

• They cause an evolution in the software to keep the 
requirements satisfied

• (Self-)adaptation: evolution is self-managed by the 
software (also, on-line adaptation)

• It may require human intervention (maintenance) to 
evolve the software off-line

• It may still be possible to install off-line modifications 
while the application is running

13
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Software evolution revisited

• Software evolution recognized as a crucial problem since 
the 1970’s (work by L. Belady and M. Lehman)

- they proposed “laws” of sw evolution
• Viewed as a problem to be managed off-line and mainly as 

a software development problem
• What is new here

– the unprecedented intensity of change/uncertainty
– the request that software responds to changes while 

the system is running, possibly in a self-managed manner

14
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Software paradigm shift
• Conventional separation between development time 

and run time is blurring
• Models + requirements need to be kept + updated at 

run time (systems need to be reflective)
• Continuous verification must be performed to detect 

the need for evolution

15

Env

	  
	  F(S=OK)

R. Calinescu, C. Ghezzi, M. Kwiatkokwska, R. Mirandola, “Self-adaptive software needs 
quantitative verification at runtime”, Comm. ACM, Sept. 2012
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Paradigm shift: 
rethink run-time environments

• Traditionally software engineering mostly concerned 
with development time, clearly separated from run time

• The result is code that simply needs to be run 
• (Self-)adaptive software requires much more

- the deployed software must be reflective, able to reason 
about itself and the environment
✓ models
✓ goals and requirements
✓ strategies

- agility becomes a run-time objective

16
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KAMI: a framework for self-
adaptation

17

• [ICSE 2009] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli,  
"Model Evolution by Run-Time Parameter Adaptation”

• [RE 2009] C. Ghezzi, G. Tamburrelli, "Reasoning on Non 
Functional Requirements for Integrated Services”

• [FSE 2010] I. Epifani, C. Ghezzi, G. Tamburrelli, "Change-Point 
Detection for Black-Box Services”
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Specific focus
• Non-functional requirements

– reliability, performance, energy consumption, cost, …

• Quantitatively stated in probabilistic terms
• Dc decomposed into Du , Ds 

– Du = usage profile

– Ds = S1 ∧ .... ∧ Sn   Si  assumption on i-th service

18

?
System under 
development

?
?
?

?

???
Hard to estimate at 
design time + 
very likely to change 
at run time
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Our approach in a nutshell
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Models

• Different models provide different viewpoints from 
which a system can be analyzed

• Focus on non-functional properties and quantitative 
ways to deal with uncertainty

• Use of Markov models
– DTMCs for reliability
– CTMCs for performance
– Reward DTMCs for energy/cost/...

20
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Using verification for change 
detection and adaptation

21
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Using verification for change 
detection and adaptation
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Users 
classified as BigSpender 

or SmallSpender based on their 
usage profile.
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Using verification for change 
detection and adaptation

21

3 probabilistic requirements:
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

Users 
classified as BigSpender 

or SmallSpender based on their 
usage profile.
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Assumptions
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User profile domain knowledge

External service assumptions (reliability)
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DTMC model
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5
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DTMC model

23

Property check via model checking
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

5
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Property check via model checking
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as                                     
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R3: “Probability of an authentication failure is less then < 0.06”
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DTMC model

23

Property check via model checking
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

 0.84

0.056
0.031

5
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What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the  updated DTMC 

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24
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What happens at run time?

• We monitor the actual behavior
• A statistical (Bayesian) approach estimates the  updated DTMC 

matrix (posterior) given run time traces and prior transitions
• Boils down to the following updating rule

24

A-priori Knowledge A-posteriori Knowledge

Tuesday, June 4, 13



In our example
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In our example
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R2: “Probability of an ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”
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In our example
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0.067

R2: “Probability of an ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”
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In our example

25

0.067

R2: “Probability of an ExpShipping failure for a user recognized as                                     
	
 BigSpender <  0.035”

Requirement
violated!
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The problem

• Verification subject to (application-dependent) hard 
real-time requirements

• Running the model checker after any change 
impractical in most realistic cases

• But changes are often local, they do not disrupt the 
entire specification

• Can they be handled in an incremental fashion?
• This requires revisiting verification procedures!
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Run-time agility, incrementality
• Agility taken to extremes

- time boundaries shrink 
✓ constrained by real-time requirements

• Verification approaches must be re-visited
- they must be incremental

Given S system (model), P property to verify for S 
Change = new pair S’, P’
Incremental verification reuses part of the proof of 
S against P to verify S’ against P’

27

Tuesday, June 4, 13



Incrementality by parameterization

• Requires anticipation of changing parameters
• The model is partly numeric and partly symbolic
• Evaluation of the verification condition requires 

partial evaluation (mixed numerical/symbolic 
processing)

• Result is a formula (polynomial for reachability on 
DTMCs)

• Evaluation at run time substitutes actual values to 
symbolic parameters

28
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Back to the example

30

r = 0.85− 0.85 ⋅ x + 0.15 ⋅ z− 0.15 ⋅ x ⋅ z− y ⋅ x
0.85+ 0.15 ⋅ z

r = Pr(◊ s = 5)> r
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Matlab
Prism
MRMC
WM

T
im

e 
(u

s)
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104

105

106

Model size (# states)
50 100 150 200 250 300 350 400 450 500

Run-time verification
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The WM approach

• Assumes that the Markov model contains absorbing 
states, and that they are reachable

• Works by symbolic/numeric matrix manipulation
• Resulting formula for reachability properties is 

polynomial
• All of (R) PCTL covered
• Expensive design-time partial evaluation, fast run-

time verification
- symbolic matrix multiplications, but very sparse 

and normally only few variables
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Further advantage of WM

• Because reachability properties can be expressed via 
polynomial functions, it is also possible to compute 
their (partial) derivative and perform sensitivity 
analysis

- Which parameters affect most the global quality in 
the current operation point?

• Similar approach can deal also with rewards
- Energy consumption, Average Execution time, 

Outsourcing cost, CPU time, Bandwidth
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More on example

Cost units:����$
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WM for Reward-DTMC
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Cook first:

WM for Reward-DTMC
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Cook first:

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

WM for Reward-DTMC
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Cook first:

Warm-up later:

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

WM for Reward-DTMC

Tuesday, June 4, 13



35

Cook first:

Warm-up later:

{4W = �.�, 4RW = �.��, 4IW = �.��, RW = ��, IW = ��}
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Cook first:

Warm-up later:

{4W = �.�, 4RW = �.��, 4IW = �.��, RW = ��, IW = ��}

\PSKMR =
�� � � · 4W + 4RW · RW + � · 4IW + � · 4RW + 4IW · IW

� � 4W

Partial evaluation

Evaluate rational expression

=� \PSKMR = ��.���

WM for Reward-DTMC
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More on incremental verification

• A must to move verification at run-time
• Also key to support development processes that are 

agile/iterative
- they normally reject formal specification/

verification because they are viewed as responsible 
for rigid, inflexible development

• Through incrementality, formal specification/
verification can be reconciled with agility
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A general traditional approach:
assume-guarantee

• Resorts on modularity
• Applies assume-guarantee reasoning

- System is viewed as a parallel composition of 
modules, each of which has to guarantee a certain 
property (its contract) 
✓ we show that module M1  guarantees properties 

P1 on the assumption that module M2  
guaranties P2 , and vice versa for M2 , and then 
claim that the system composed of M1 and M2  
(i.e., both running and interacting together) 
guarantees P1 and P2  unconditionally

Tuesday, June 4, 13



38

More on incremental 
verification

A. Molzam Sharifloo, P. Spoletini, 
LOVER: Light-Weight fOrmal Verification of adaptivE Systems at Run Time, 
Formal Aspects of Component Software, LNCS, 2013

C. Ghezzi, C. Menghi, A. Molzam Sharifloo, P. Spoletini 
On Requirements Verification for Model Refinements, accepted RE 2013
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Incremental verification of state 
machines against functional properties

• Partial LTSs against CTL
- a state (in general, a subgraph) can be un-specified 
★we can compute the property P^-- the 

constraint that needs to be satisfied by the un-
specified fragment so that the entire LTS satisfies 
a property P

• The un-specified portion is the one that may change; 
constraints are the pre-computed property that 
needs to be verified on the portion
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How to make verification incremental

Syntax-driven incrementality
• Assumes that artifact to analyze has a 

syntactic structure expressible as a 
formal grammar

• Verification is expressed via 
attributes (à la Knuth)

• Changes can be of any kind

40
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Intuition
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Syntax-driven incrementality
• Incremental parsing strategy finds 

boundary for artifact re-analysis
• Knuth proved that attributes can be only 

synthesized (computed bottom-up) and 
thus only need to be recomputed for the 
changed portion + propagated to the root 
node
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Incremental parsing: intuition

• Assume w is the modified portion
• Ideally, re-analyze only a sub-tree “covering” w, rooted in <N>, 

and “plug-it-in” the unmodified portion of tree
• The technique works if the sub-tree is small, and complexity of 

re-analysis is the same as complexity of “main” algorithm

42
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Incremental parsing:                    
	
 	
 past and new results

• Past work on incremental parsing
- C. Ghezzi, D. Mandrioli, Incremental parsing,  ACM Trans. Program. Lang. Systems, 1979
- C. Ghezzi, D. Mandrioli, “Augmenting parsers to support incrementality”, Journal of the ACM, 1980

✓ Saves the maximum possible portion of the syntax tree, but the 
re-analyzed portion can still be large in certain cases 

• Recent work resurrected Floyd’s operator precedence grammars
- R. W. Floyd. Syntactic analysis and operator precedence,  Journal of the ACM, 1963
- S. Crespi Reghizzi and D. Mandrioli. Operator-precedence and the visibly pushdown property,  

J. Comput. Syst. Sci., to appear.

- Floyd’s grammars cannot generate all deterministic CF languages
- but in practice any programming language can be described by a 

Floyd grammar
- parsing can be started from any arbitrary point of the artifact to be 

analyzed; it can work in parallel

43

Tuesday, June 4, 13



Initial validation of the approach

• Case 1: reliability (QoS) analysis of composite workflows
- a (BPEL) workflow integrates external Web services 

having given reliability and we wish to assess reliability of 
composition

- if reliability of an external service changes, does our 
property about reliability of composition change?
✓ our previous work framed this into probabilistic model 

checking
✓ here we can deal with unrestricted changes, also in the 

workflow in a very efficient way

44
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Initial validation of the approach

• Case 2: reachability analysis as supported by program 
model checking

- given a program and a safety property, is there an 
execution of the program that leads to a violation of 
the property?

- if the program changes, how does our property 
change?
✓ similar problem faced by Henzinger et al.
• T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido. Extreme model 

checking. In Verification: Theory and Practice, volume 2772 of LNCS, 2004.

45
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Other research directions
• Adaptation via control theory

• Dynamic software update

• Model inference techniques

A. Filieri, C. Ghezzi, A. Leva, M. Maggio, Self-Adaptive Software Meets Control Theory: 
A preliminary Approach Supporting Reliability Requirements, ASE 2011

A. Filieri, C. Ghezzi, A. Leva, M. Maggio
Reliability-driven dynamic binding via feedback control, SEAMS 2012

C. Ghezzi, A. Mocci, M. Monga
Synthesizing Intensional Behavior Models by Graph Transformation (ICSE 2009)

C. Ghezzi, A. Mocci, G. Salvaneschi
Automatic Cross Validation of Multiple Specifications:  A Case Study (FASE 2010)

C. Ghezzi, A. Mocci: Behavioral validation of JFSL specifications through 
model synthesis (ICSE 2012)

X, Ma, L, Baresi, C, Ghezzi, V. Panzica La Manna, and J. Lu,  Version-consistent Dynamic 
Reconfiguration of Component-based Distributed Systems, ESEC/FSE 2011

C. Ghezzi, J. Greenyer, V. Panzica La Manna, Synthesizing Dynamically Updating 
Controllers from Changes in Scenario-based Specifications, SEAMS 2012

V. Panzica La Manna, , J. Greenyer, C. Ghezzi, C. Brenner, Formalizing Correctness 
Criteria of Dynamic Updates Derived from Specification Changes, SEAMS 2013
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Tunable DTMC model

3 kinds of transitions: fixed, observable, controllable
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Questions?
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