Search Based Requirements Selection and Optimisation

Yuanyuan Zhang
CREST Centre
University College London

Agenda

Background

Problem

Solution

Empirical Study

Conclusion

Requirements Engineering Process

Acquisition

Evolution & Management

Modelling& Analysis

Validation & Verification

Specification

Background Problem S

Solution

Empirical Study

Conclusion

Requirements Selection & Optimisation

Task

Using prioritisation, visualisation, and optimisation techniques helps decision maker to select the optimal or near optimal subset from all possible requirements to be implemented.

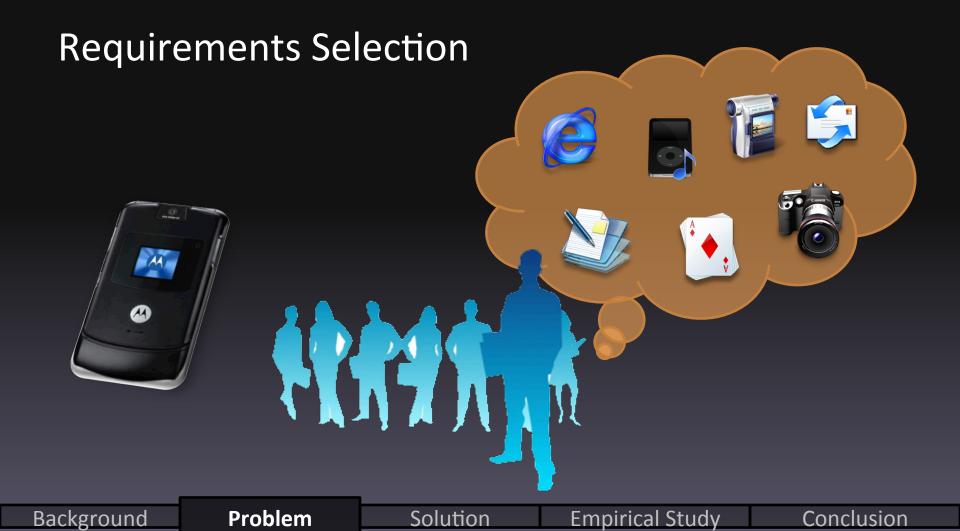
Requirements Interaction Management

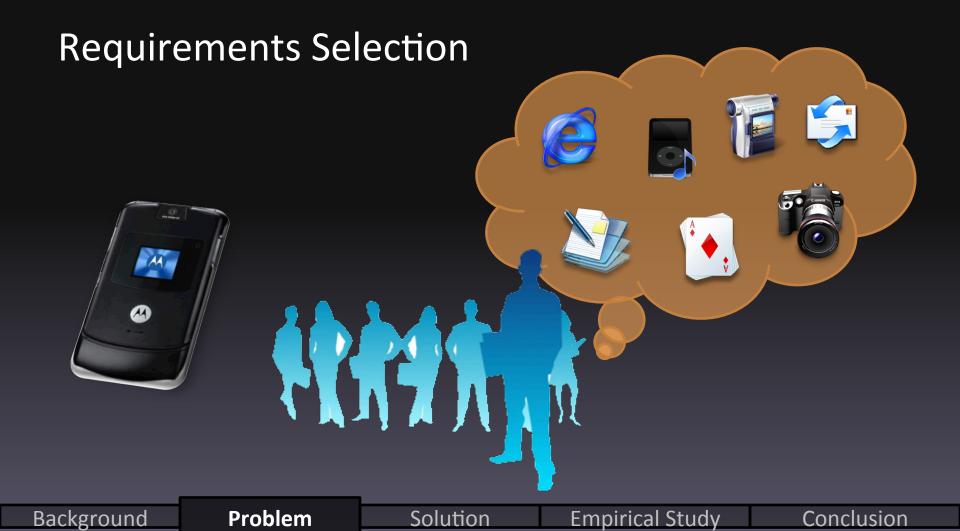
"the set of activities directed towards the discovery, management, and disposition of critical relationships among sets of requirements."

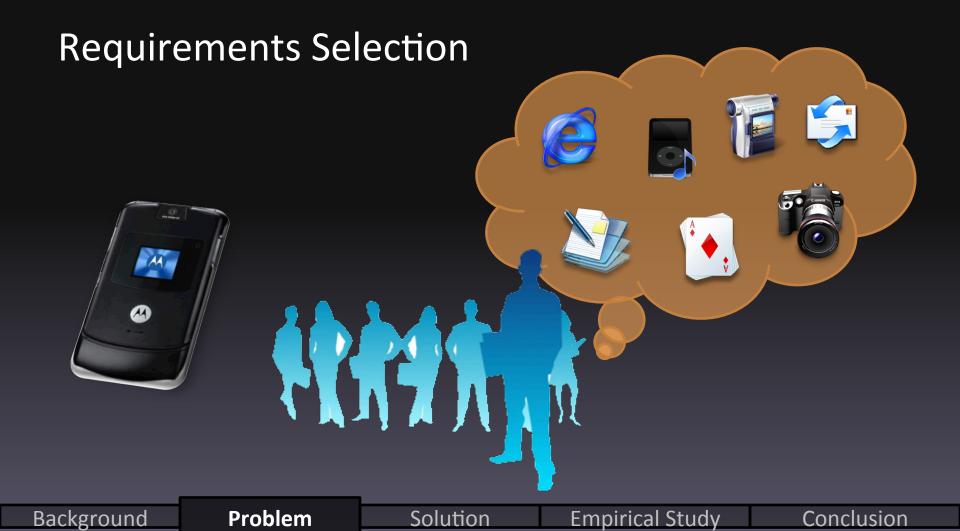
Requirements Change

Unpredictable change

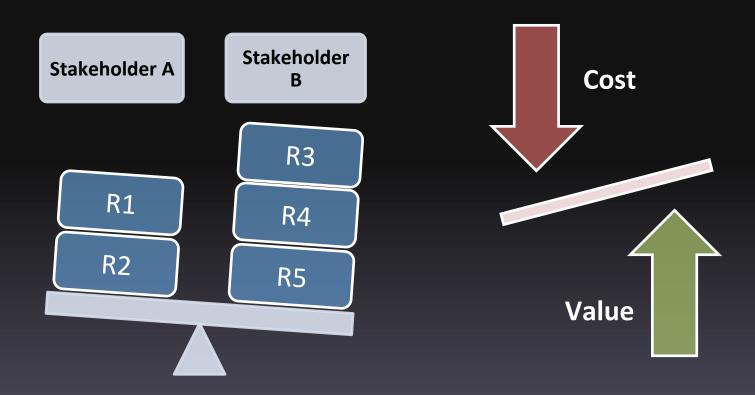
Predictable change



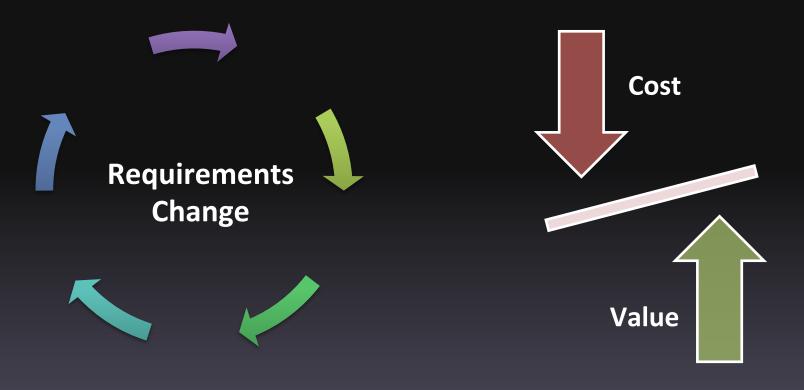




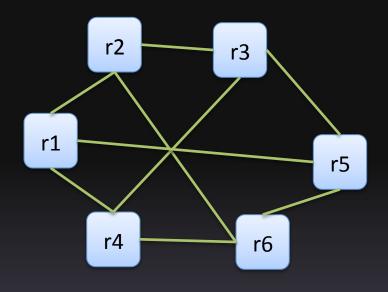
Goals



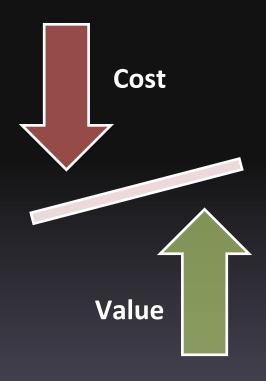
Goals



Goals



Requirements Dependency



Search based Requirements Optimisation

Use of meta-heuristic algorithms to automate and optimise requirements selection process

- Choose appropriate representation of problem
- Define problem specific fitness function (to evaluate potential solutions)
- Use search based techniques to lead the search towards optimal points in the solution space

Why Search Based Approach?

Robustness

Scalability

Sensitivity analysis

Insight

Feedback & Explanation of results

• • •

Model

Stakeholder:

$$C = \{c_1, ..., c_j, ..., c_m\}$$

Weight:

$$Weight = \left\{ w_1, ..., w_j, ..., w_m \right\}$$

Requirements:

$$R = \{r_1, ..., r_i, ..., r_n\}$$

Cost:

$$Cost = \left\{cost_1, ..., cost_n\right\}$$

Problem Background

Solution

Empirical Study

Conclusion

Model

• Each stakeholder c_j assigns a value to requirements $oldsymbol{\mathcal{V}}_i$:

$$value(r_i, c_j)$$

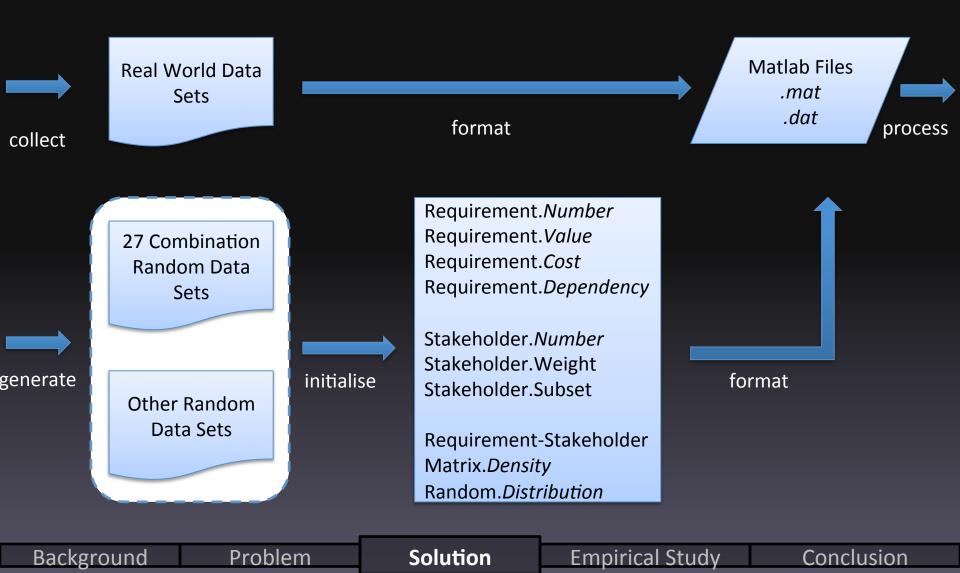
• Each stakeholder c_j has a subset of requirements that expect to be fulfilled denoted by R_j

$$R_{j} \subseteq R$$
, $\forall r \in R_{j}$ value $(r, c_{j}) > 0$

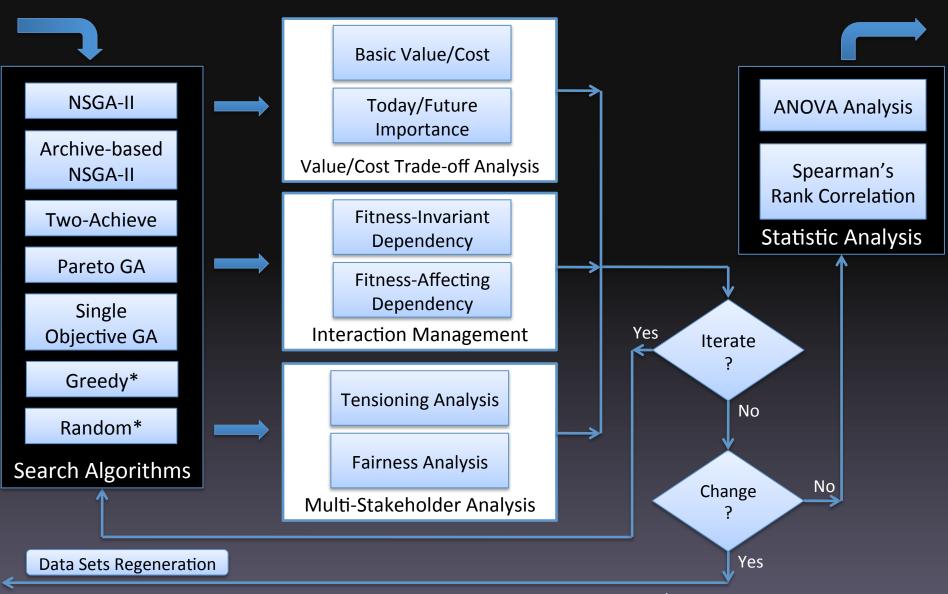
• The overall *score* of a given requirement \mathcal{F}_i can be calculated by:

$$score_i = \sum_{j=1}^{m} w_j \cdot value(r_i, c_j)$$

Data Set Collection & Initialisation



Requirements Selection Process



^{*} Strictly speaking, these are not search algorithms.

Result Representation and Visualisation

2D and 3D Pareto Requirements **Fronts** Subsets for Release Planning **Kiviat Diagrams** Insight Characteristic of Marked Line **Data Sets** represent & Charts communicate visualise & feedback Performance of Convergence the Algorithms Diversity Results

Background

Problem

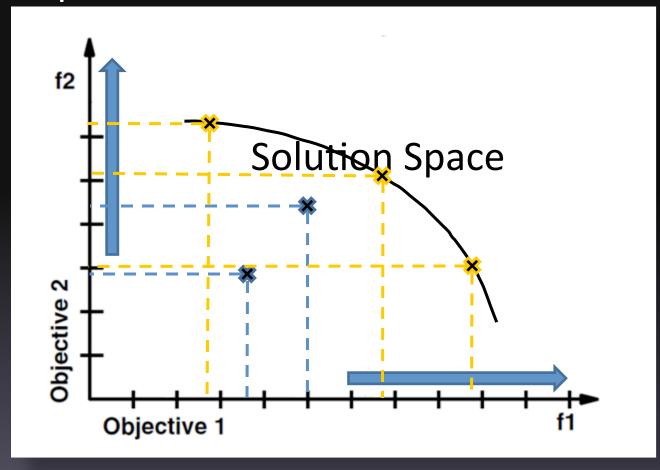
Solution

Empirical Study

Conclusion

Visualisation

Pareto Optimal Front

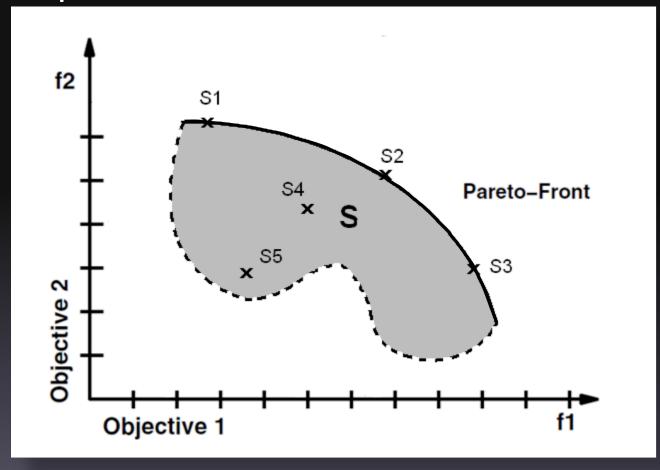


University College London yuanyuan.zhang@cs.ucl.ac.uk

Conclusion

Visualisation

Pareto Optimal Front



University College London yuanyuan.zhang@cs.ucl.ac.uk

Conclusion

The problem is to select a set of requirements that maximise customers' satisfaction (total value) and minimise required cost.

The model of fitness functions represented as:

Maximise

$$f_1\begin{pmatrix}\mathbf{r}\\x\end{pmatrix} = \sum_{i=1}^n score_i \cdot x_i$$

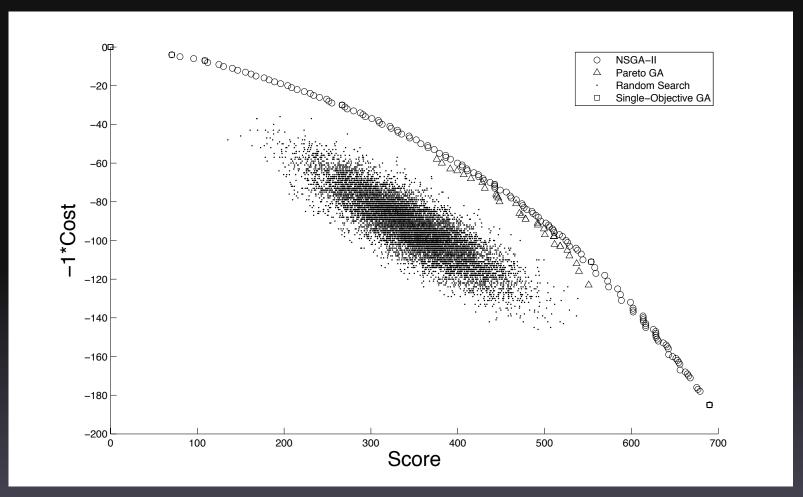
Minimise

$$f_2\begin{pmatrix} \mathbf{r} \\ \mathbf{x} \end{pmatrix} = \sum_{i=1}^n cost_i \cdot \mathbf{x}_i$$

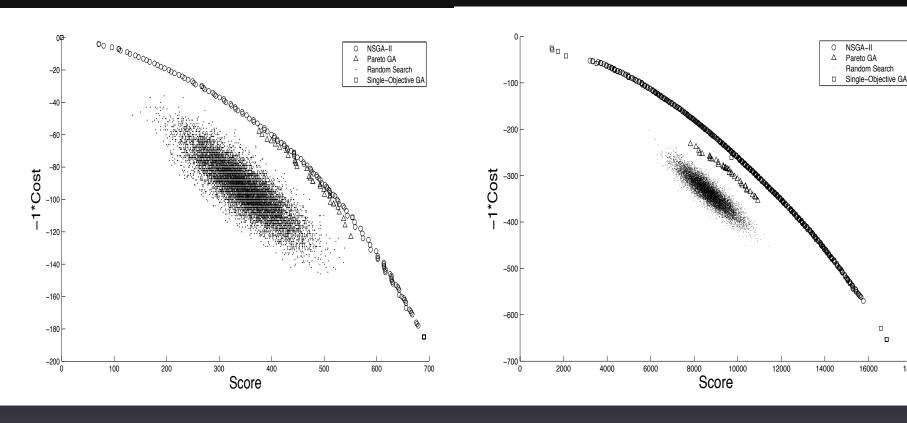
Scale Problem

 consider three typical 'scales' cases of problem, with the number of customers ranging from 15 to 100 and the number of requirements ranging from 40 to 140.

Investigate the relative performance of the approaches for cases.



Synthetic data set: 15 stakeholders; 40 requirements

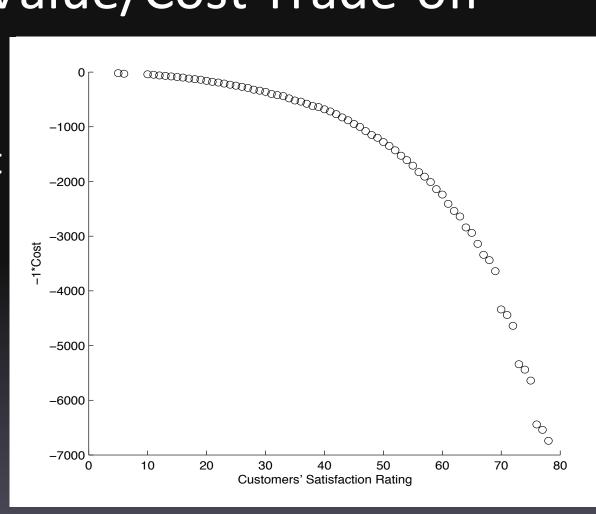


15 Stakeholders40 Requirements

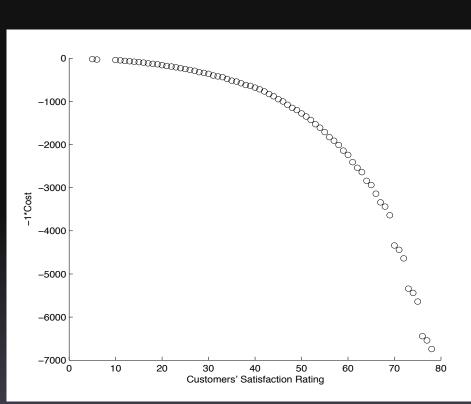
100 Stakeholders140 Requirements

Motorola Data set
4 Stakeholders

35 Requirements



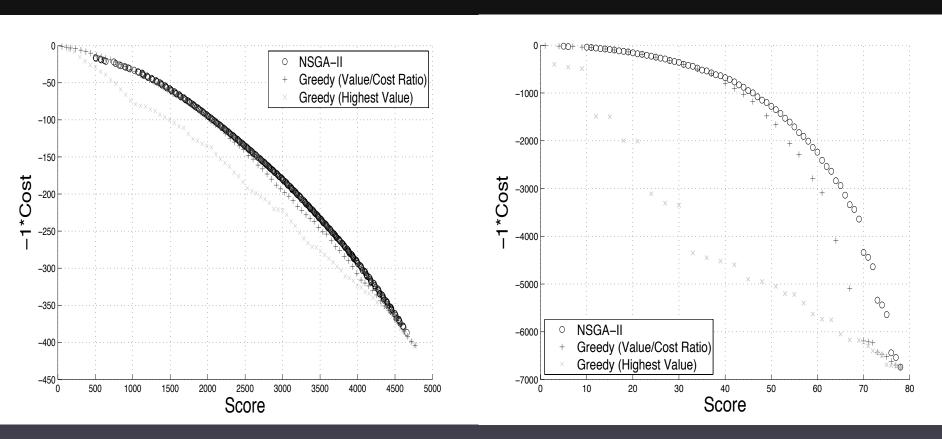
Results comparison



Synthetic

Motorola

Search vs. Greedy



Synthetic

Motorola

Background Problem Solution **Empirical Study** Future Work

To provide robust solutions not only in the context of present conditions but also in response to those future changes that can be anticipated

Maximise

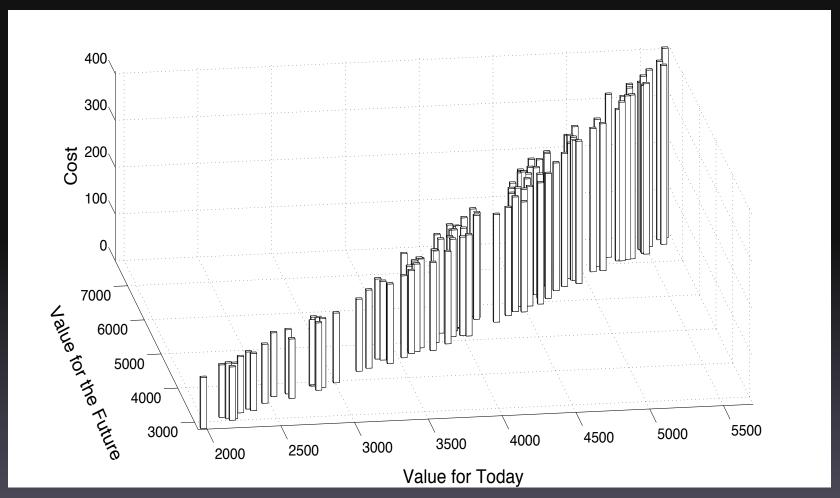
$$f_1\begin{pmatrix} \mathbf{r} \\ \mathbf{x} \end{pmatrix} = \sum_{i=1}^n score_{i,today} \cdot \mathbf{x}_i$$

Maximise

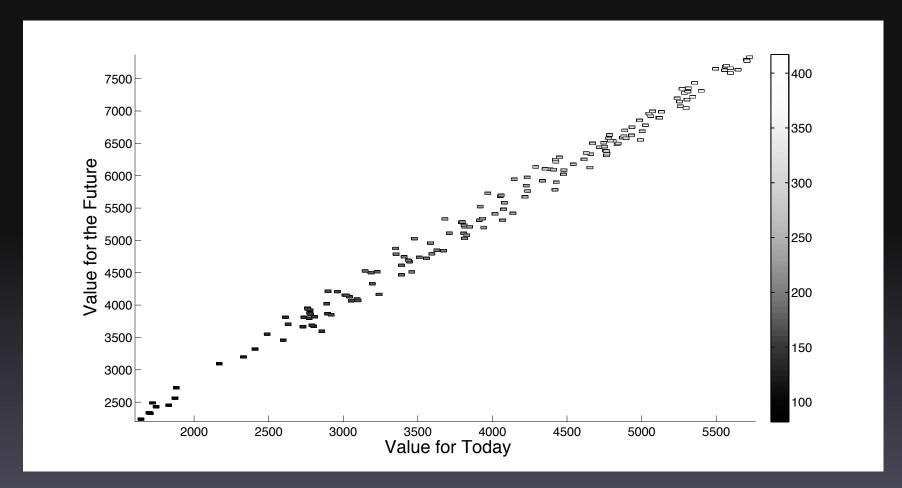
$$f_1(x) = \sum_{i=1}^{n} score_{i, future} \cdot x_i$$

Minimise

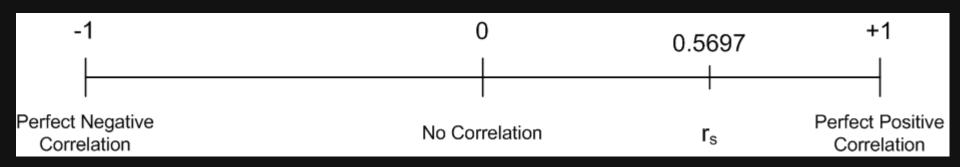
$$f_3\begin{pmatrix} \mathbf{r} \\ \mathbf{x} \end{pmatrix} = \sum_{i=1}^n cost_i \cdot \mathbf{x}_i$$



Results from Ericsson Data Sets: 124 Requirements, 14 Customers



Projection onto the X-Y Plane



Spearman's Rank Correlation Coefficient

This indicates a positive correlation between the value for today and value for the future.

3. Multi-Stakeholder Tensioning Anslysis

The problem is to select a set of requirements that maximise the total value to each stakeholder, which is expressed as a percentage.

The model of fitness functions represented as:

Maximise

$$\frac{\sum_{i=1}^{n} value(r_i, c_j) \cdot x_i}{\sum_{r \in R_j} value(r, c_j)}$$

subject to

$$\sum_{i=1}^{n} cost_{i} \le B, \qquad B > 0$$

Data Sets Used

1. Motorola Data Set:

35 Requirements and 4 Stakeholders

2. Greer and Ruhe Data Set:

20 Requirements and 5 Stakeholders

Data Sets Used

3. 27 Combination Levels of Random Data Sets:

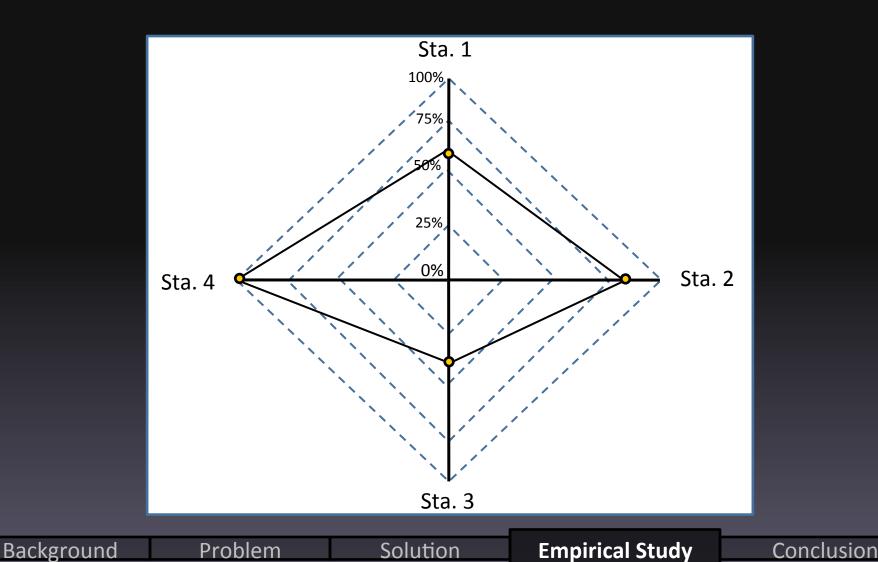
the No. of requirements

the No. of stakeholders

the density of the stakeholder-requirement matrix

	R_{small}	R_{medium}	R_{large}
	$C_s \; R_s \; D_{low}$	$C_s R_m D_{low}$	$C_s R_l D_{low}$
C_{small}	$C_s R_s D_m$	$C_s R_m D_m$	$C_s R_l D_m$
	$C_s R_s D_h$	$C_s R_m D_h$	$C_s R_l D_h$
	$C_m R_s D_{low}$	$C_m R_m D_{low}$	$C_m R_l D_{low}$
C_{medium}	$C_m R_s D_m$	$C_m \ R_m \ D_m$	$ig C_m \ R_l \ D_m$
	$C_m R_s D_h$	$C_m R_m D_h$	$C_m R_l D_h$
	$C_l R_s D_{low}$	$C_l R_m D_{low}$	$C_l R_l D_{low}$
C_{large}	$C_l R_s D_m$	$C_l R_m D_m$	$ig C_l \; R_l \; D_m$
	$C_l R_s D_h$	$C_l R_m D_h$	$oxed{C_l \; R_l \; D_h}$

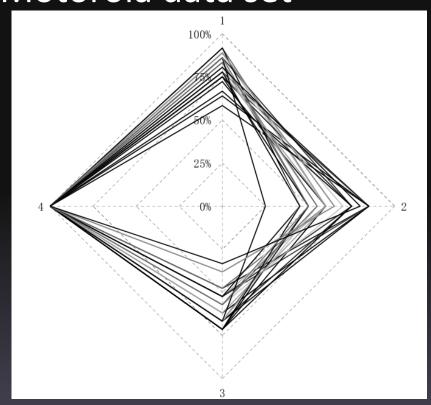
Multi-Stakeholder Kiviat Diagram

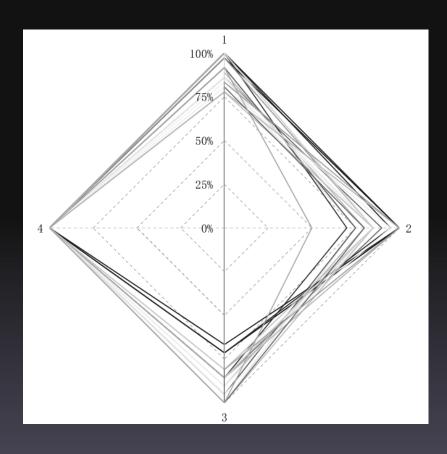


University College London yuanyuan.zhang@cs.ucl.ac.uk

Multi-Stakeholder Tensioning Analysis

Motorola data set

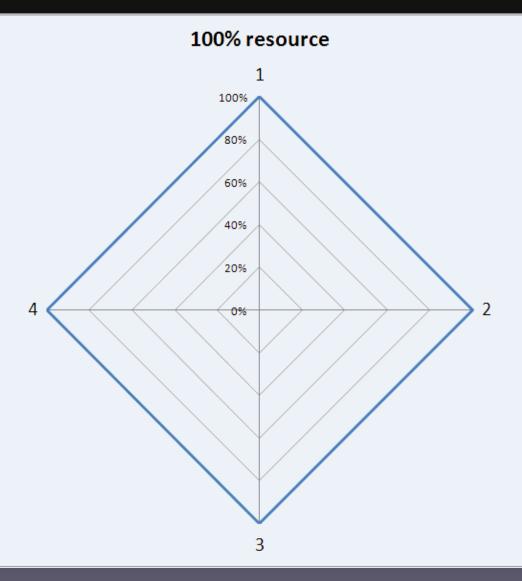




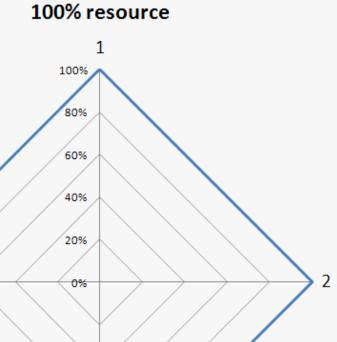
30% Budgetary Resource Constraint

70%

Solutions on the Pareto Front



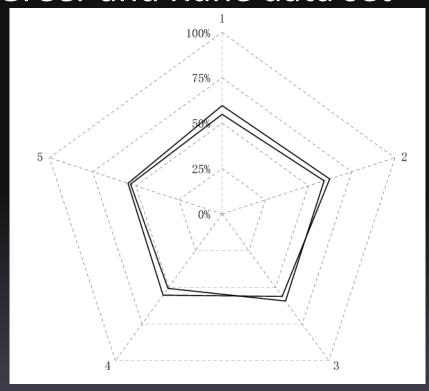
Average Solutions

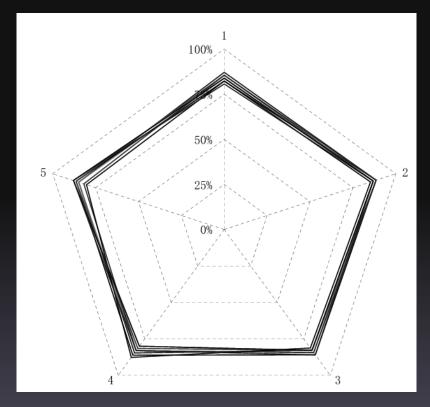


Tensions between the Stakeholders' Satisfaction for Different Budgetary Resource Constraints

Multi-Stakeholder Tensioning Analysis

Greer and Ruhe data set





30% Budgetary Resource Constraint

70%

Algorithms' Performance

$$C = \frac{\sum_{i=1}^{N} d_i}{N}$$

	Rank Order for Convergence		
	winner	runner up	loser
Random Search	0%	0%	100%
Two-Archive	95.19%	4.81%	0%
NSGA-II	7.04%	92.96%	0%

$$P = \frac{num}{NUM}$$

	Solutions on the Reference front	
Random Search	Two-Archive	NSGA-II
2.68%	94.57%	38.25%

Algorithms' Performance

1. The diversity of the Two-archive algorithm is significant in most cases

2. The Two-archive and NSGA-II algorithms always have a better convergence than the Random Search

3. The Two-Archive algorithm outperforms NSGA-II and Random Search in terms of convergence in some case

Fairness on Absolute *number* of fulfilled requirements:

Maximise \overline{NA}

Minimise $\sigma(NA)$

Fairness on absolute value of fulfilled requirements:

Maximise \overline{VA}

Minimise $\sigma(VA)$

where $VA_j = \sum_{i=1}^n value(r_i, c_j) \cdot x_i$

Fairness on the percentage of value and cost of fulfiled requirements:

Minimise

$$\sigma(Cost_C)$$

Maximise

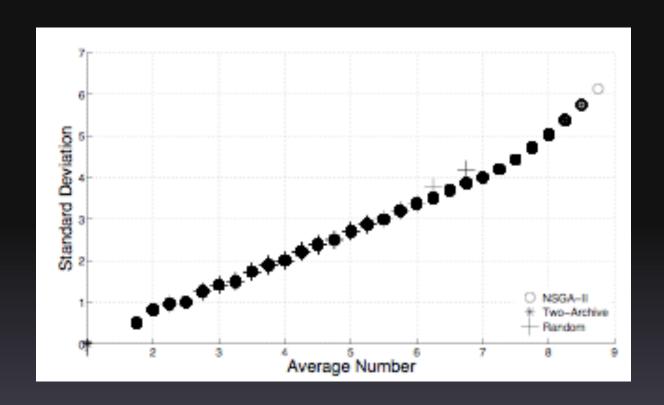
$$\overline{VP}$$

Minimise

$$\sigma(VP)$$

Minimise

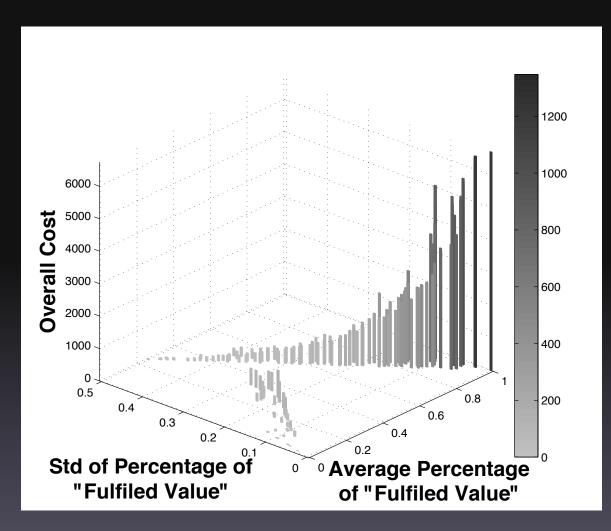
$$\sum_{i=1}^{n} cost_{i} \cdot x_{i}$$



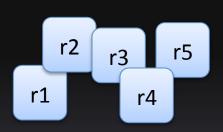
Background Problem Solution Empirical Study Future Work

Motorola Data Set

Fairness on
Percentage of
Fulfilled Value



5. Requirements Interaction Management (RIM)



Requirements

And
Or
Precedence
Valuerelated
Cost-related

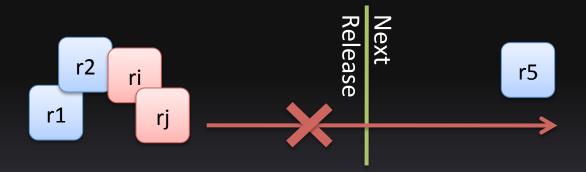
And

Given requirement r_i is selected, then requirement r_j has to be chosen.

Define an equivalence relation ξ on the requirements array R such that $r(i, j) \in \xi$

Or

Requirements r_i and r_j are conflicting to each other, only one of r_i , r_j can be selected.



Define an equivalence relation φ on the requirements array R such that $r(i,j) \in \varphi$

Precedence

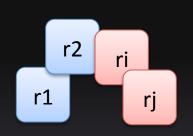
Given requirement r_i has to be implemented before requirement r_j



Define an partial order \mathcal{X} on the requirements array R such that $r(i, j) \in \chi$

Cost-related

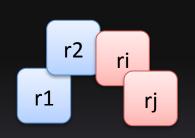
Given requirement r_i is selected, then this selection affects the cost of implementing requirement r_i .



Define an partial order ω on the requirements array R such that $r(i, j) \in \omega$

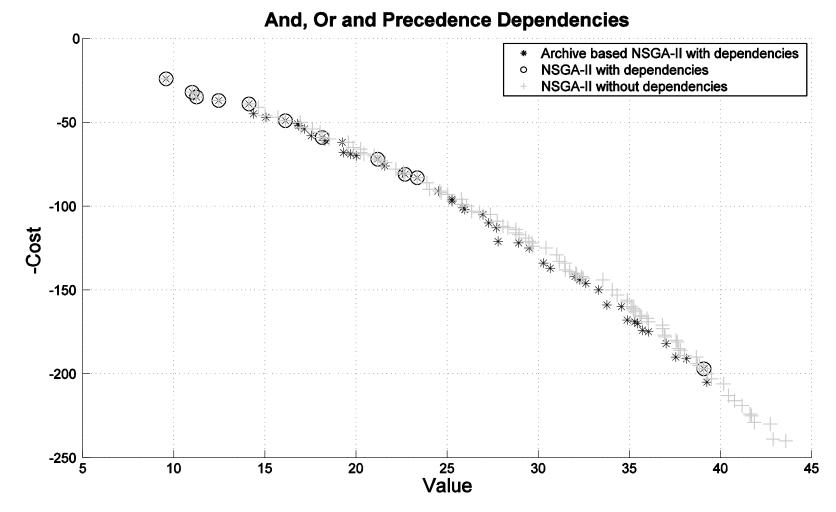
Value-related

Given requirement r_i is selected, then this selection affects the value of requirement r_j for the stakeholder.



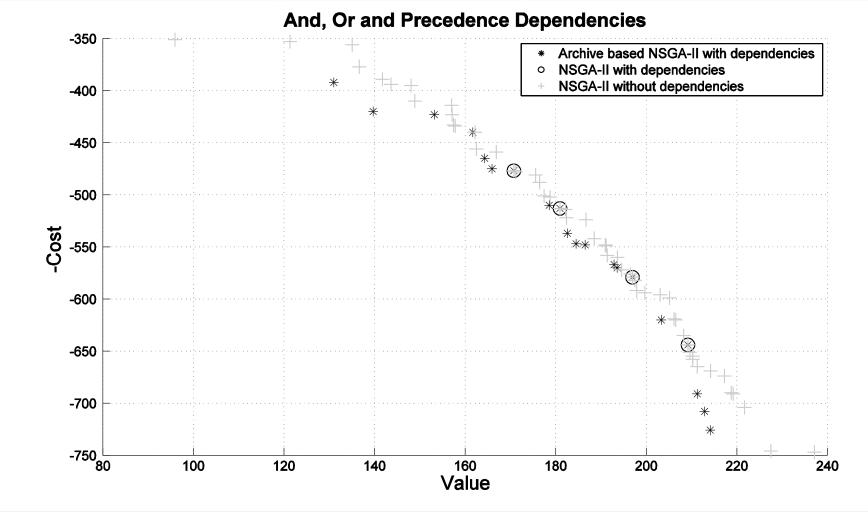
Define an partial order ψ on the requirements array R such that $r(i, j) \in \psi$

Empirical Study 5: RIM



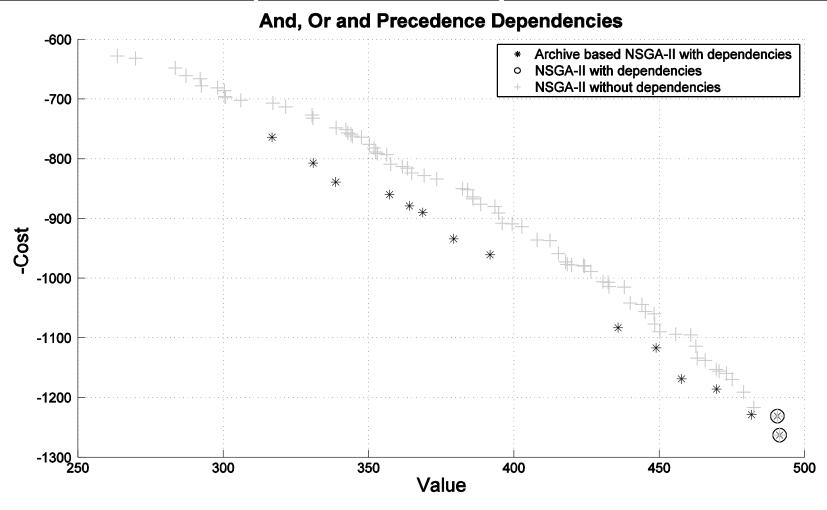
34 Customers, 50 Requirements

Empirical Study 5: RIM



4 Customers, 258 Requirements

Empirical Study 5: RIM



21 Customers, 412 Requirements

Conclusion

- Basic Value/Cost Trade-off analysis
- Today/Future Importance Analysis
- Multi-Stakeholder tension and fairness analysis
- Requirements Interaction Management

```
SBSE http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
```

