

Interactive Search Approaches for Requirements Prioritization

Angelo Susi

In collaboration with Alessandro Marchetto, Francis Palma, Giuseppe Scanniello, PaoloTonella

Fondazione Bruno Kessler Software Engineering Research Unit Trento, Italy

Outline

- The problem of requirements prioritization
- The purpose of interaction in prioritization methods
- Exploitation of Interactive Genetic Algorithm
- Applications of the approach to test cases prioritization (ongoing work)

The problem of (requirements) prioritization

- The activity of finding an order relation on the set of requirements under analysis
- Prioritize according to domain knowledge / constraints concerning
 - available budget
 - time constraints
 - business risks
 - stakeholder expectations
 - technical constraints

A simple Interaction Schema

The Interaction Schema

Why interaction in prioritization

- Increment the effectiveness of the prioritization process via the exploitation of knowledge by the decision makers
 - Decision makers have a lot of "hidden" information that can be "extracted" and exploited
- (Expected) effects:
 - Inclusion of "emerging" knowledge stimulated by the specific subproblem to solve
 - Decrease of the decision making effort
 - Increase of the precision of the result

Some key points

- Important ingredients for interaction are:
 - The process should be able to detect "critical" points (such as inconsistencies between constraints and inconsistencies in the feedback)
 - The process should be able to "express" the critical point and ask the decision maker(s) to solve it
 - The process should be able to exploit the feedback

Approaches

- Incomplete Analytic Hierarchy Process (IAHP): state-of-the-art pairwise comparison approach, considers only user feedback on the set of alternative requirements, and exploit it to drive the elicitation process
- CBRank: pairwise approach based on Machine Learning techniques that take into account previous user feedback and the domain constraints to drive the process of elicitation of the feedback
- Interactive Genetic Algorithms: use of genetic algorithms to find the solution and drive the elicitation process (that could be based on pairwise comparisons)

(One of) our approach(es)

- Based on Interactive Genetic Algorithm (IGA)
 - aims at minimizing the disagreement between a total order of prioritized requirements and the various constraints that are either encoded with the requirements or that are expressed iteratively by the user during the prioritization process

The Input

- Set of Requirements
- Requirements documentation (e.g., cost of the implementation, value for the stakeholders, dependencies between requirements) that can be converted into total or partial rankings of the requirements
- Evaluation from users in terms of orderings between pairs of requirements

The process

- 1. Acquisition and coding of set of Requirements and Documentation
- 2. Interactive Genetic Algorithm: computation of solutions (individuals), also exploiting evaluations from users
- 3. Output of the ranking (the most promising individual)

The IGA algorithm: step 2.

- 2.1. computation of a first set of solutions (individuals)
- 2.2. identification of **conflicts** (ties) between individuals and constraints
- 2.3. request of knowledge to users (to decide about conflicts)
- 2.4. computation of new solutions
 - via evolution rules
- 2.5. If max number of iterations
 - than exit
 - else 2.2

Req. documentation coding into graphs

Transform the **domain knowledge** into graphs

Production of individuals and identification of conflicts

Individual ID	Requirements roungs (Individual)	Disagree
Pr ₁	< R ₃ ,R ₂ ,R ₁ ,R ₄ ,R ₅ >	
Pr ₂	< R ₃ ,R ₂ ,R ₁ ,R ₅ ,R ₄ >	
Pr ₃	< R ₁ ,R ₃ ,R ₂ ,R ₄ ,R ₅ >	
Pr ₄	< R ₂ ,R ₃ ,R ₁ ,R ₄ ,R ₅ >	
Pr ₅	< R ₂ ,R ₃ ,R ₄ ,R ₅ ,R ₁ >	
Pr ₆	< R ₂ ,R ₃ ,R ₅ ,R ₄ ,R ₁ >	

Conflicts = $\{(R_3, R_1), (R_3, R_4), (R_3, R_5)\}$

Production of individuals and identification of conflicts

Individual ID	Requirements r kings (Individual)	Disagree
Pr ₁	< R ₃ ,R ₂ ,R ₁ ,R ₄ ,R ₅ >	6
Pr ₂	< R ₃ ,R ₂ ,R ₁ ,R ₅ ,R ₄ >	6
Pr ₃	< R ₁ ,R ₃ ,R ₂ ,R ₄ ,R ₅ >	6
Pr ₄	< R ₂ ,R ₃ ,R ₁ ,R ₄ ,R ₅ >	7
Pr ₅	< R ₂ ,R ₃ ,R ₄ ,R ₅ ,R ₁ >	9
Pr ₆	< R ₂ ,R ₃ ,R ₅ ,R ₄ ,R ₁ >	9

.. and so on ...

Pairs to be evaluated to choose the individuals for feedback

Individual ID	Requirements rankings (Individual)	Disagree
Pr ₁	< R ₃ ,R ₂ ,R ₁ ,R ₄ ,R ₅ >	6
Pr ₂	< R ₃ ,R ₂ ,R ₁ ,R ₅ ,R ₄ >	6
Pr ₃	< R ₁ ,R ₃ ,R ₂ ,R ₄ ,R ₅ >	6
Pr ₄	< R ₂ ,R ₃ ,R ₁ ,R ₄ ,R ₅ >	7
Pr ₅	< R ₂ ,R ₃ ,R ₄ ,R ₅ ,R ₁ >	9
Pr ₆	< R ₂ ,R ₃ ,R ₅ ,R ₄ ,R ₁ >	9

$PR_1 = < R_3, R_2, R_1$,R ₄ ,R ₅ >
vs $PR_2 = < R_3, R_2, R_1$	
2 3, 2, 1	1 15,1 14

 (R_4, R_5)

Ranked individuals with respect to disagreement

Candidate pairs to be asked to decision maker

Indiv. ID	PAIRS
Pr ₁ , Pr ₂ , Pr ₃	$(R_4, R_5), (R_1, R_2), (R_1, R_3)$
Pr ₅ ,Pr ₆	(R_4, R_5)

User feedback

TIE	PAIRS
Pr ₁ , Pr ₂ , Pr ₃	(R ₄ , R ₅), (R ₁ , R ₂), (R ₁ , R ₃)
Pr ₅ ,Pr ₆	(R ₄ , R ₅)

Why (R_4, R_5) ?

Nothing is said about (R₄,R₅) in the Priorities and Dependencies graphs

Why (R_1,R_2) and (R_1,R_3) ?

New round of the algorithm

The new evolved population

 is compared against the new set of constraints graphs

User Preference Graph eliOrd

Case Study

- Prioritize requirements for a real software system, as part of the project ACube (Ambient Aware Assistance)
 - designing a highly technological monitoring environment to be deployed in nursing homes to support medical and assistance staff
- After user requirements analysis phase,
 - 60 user requirements and 49 technical requirements
 - Four macro-scenarios have been identified
- A Gold standard from the software architect

Id	Macro-scenario	# of requirements
FALL	Monitoring falls	26
ESC	Monitoring escapes	23
MON	Monitoring dangerous behavior	21
ALL	The three scenarios	49

Evaluation: Role of interaction

Role of interaction: Does IGA produce improved prioritizations Compared to non-interactive requirement ordering?

IGA outperforms GA (and RAND), especially when a higher number of pairwise comparisons can be carried out

Apply to test case prioritization

- Several objectives to increment the "value for the user" (remind the discussion yesterday)
 - Maximize Code Coverage (low level artifact)
 - Maximize "Most Important Requirements" Coverage (high level artifact)
 - Minimize Execution Cost
- Advantages
 - Explicitly considers both structural (code) and functional (requirements) dimension at the same time
 - Identifies both technical and business critical faults early
 - Fills gap between low level and high level artifacts by means of traceability

The most important requirements

Test cases prioritization

Collect information about objectives

Discover traceability links between Test and Source

Discover Traceability links between Test and Requirements

Measure execution time of test case

Prioritize

Test case estimation (Fitness) using Objective Function

Conclusions

 SSBSE is a point of contact between requirements and testing

 Not only, also the exploitation of user knowledge is important in both cases

In the future

TO BE EXPLORED - SSBSE in:

- Risk analysis and mitigation strategies selection
- Normative requirements, were we have to choose among different ways of being compliant with a given law

Thank you