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Fixing the Terms

• Goals 
Objectives to be achieved by system through agent 
cooperation

• Domain Properties

Descriptive statements about the system (e.g., effect of 
operations) 

• Scenarios

How the software-to-be and its environment should and 
should not interact (positive and negative)

• Operational Requirements

Constraints on the actions an agent can perform to achieve the 
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Operational requirements on software agents

❏(CriticalMethane  → ❍ ¬ switchPumpOn)
❏((CriticalMethane ∧ PumpOn) → ❍  switchPumpOff)
❏(HighWater ∧ ¬ CriticalMethane ∧ ¬ PumpOn   → ❍ switchPumpOn)
❏((HighWater ∧ ¬ CriticalMethane) → ❍ ¬ switchPumpOff )
❏(LowWater → ❍  ¬ switchPumpOn)
❏((LowWater ∧ PumpOn)   → ❍ ¬ switchPumpOff)
❏((CriticalMethane ∧ ¬ Alarm) → ❍ raiseAlarm)
❏((¬ CriticalMethane ∧ Alarm) → ❍ stopAlarm)

PumpOnWhenHighWater

HighWaterDetected PumpOnWhenHighWaterDetec

Domain Property: 
Operation: switchPumpOn
DomPre: ¬PumpOn    
DomPost: PumpOn



Operational Requirements Elaboration
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Inductive Learning (1)

Inductive Learning Hypothesis

Background
Theory

Negative Examples

Positive Examples

Constraints

Given: 
✦   B       (background theory)
✦   E+     (set of positive examples)
✦   E-      (set of negative examples)
✦   IC      (set of integrity constraints)

Find: 
✦  H     (hypothesis such that)

- B ⋃ H ⊨ E+

- B ⋃ H ⊭ E-

- B ⋃ H ⋃ IC is consistent

Theory Completion



The secret of flight

Given:

            B   = {animal(X).  bird(X).   robin(a).   pigeon(b).}
              E+ = {fly(a).  fly(b).}              
              E-  = {}
              C  = {⊥ ← bird(X), not animal(X).} 

Search space includes 
rules with the predicate 
fly in the head and the 
predicates bird and 
penguin in the body.

Find:

         H1 = {fly(X) ← bird(X).}

H3 = {fly(X).} 

H2 = {fly(X) ← animal(X).} 

Optimal Solution is the smallest hypothesis that may be constructed



Inductive Learning (2)

Inductive Learning Hypothesis
Negative Examples

Positive Examples

Constraints

Background
+ Revisable

Theory

Given: 
✦   B       (background theory)
✦   R      (revisable theory)
✦   E+     (set of positive examples)
✦   E-      (set of negative examples)
✦   IC      (set of integrity constraints)

Find: 
✦  R`     (revised theory such that)

- B ⋃ R` ⊨ E+

- B ⋃ R` ⊭ E-

- B ⋃ R` is consistent 
- c(R, R`) is minimal   

Theory Revision



The secret of flight

Given:

            B   = {animal(X).  bird(X).  robin(A).  pigeon(b).  penguin(c).}
              E+ = {fly(a).  fly(b).}              
              E-  = {fly(c).}
              IC  = {⊥ ← bird(X), not animal(X).}
              R   = {fly(X).}

Search space includes 
rules with the predicate 
fly in the head and the 
predicates bird and 
penguin in the body.

Find:

H1 = {fly(X) ← not penguin(X).}
                                                        
                                                         c(R,R`) = 1

Optimal Solution is the hypothesis with minimal changes min(c(R,R`))

revised



Elaboration & Learning: Symmetrical?

Inductive Learning Hypothesis
Negative Examples

Positive Examples

Elaborate Operational 
requirements

Negative Scenarios

Positive Scenarios

GoalsDomain Properties
Requirements
Elaboration

Inductive
Learning

Constraints
Background

Theory



Learning Operational Requirements

Complete Operational 
requirements

Negative Scenarios

Positive Scenarios

Domain Properties Goals

Operational 
requirements

Dalal Alrajeh, Jeff Kramer, Alessandra Russo, Sebastian Uchitel. Learning Operational Requirements from Goal 
Models, Proceedings of 31st International Conference on Software Engineering (ICSE'09), 265-275, 2009.



Learning Task

Given 

A a set of domain properties D, a partial set of operational requirements O and 
scenarios (S+ U S-) such that
                                  
                                  D U O ⊭ s+       for some s+ in S+

                                 D U O ⊨ s-        for some s- in S-

                                 D U O U G       is consistent

Find
The smallest set of operational requirements O` such that

	
 	
                        D U O U O`  ⊨ s+      for all s+ in S+

                                 D U O U O`  ⊭s-       for all s- in S-

                                 D U O U O` U G       is consistent

where ⊨ is interpreted as the linear temporal logic satisfaction relation with respect to 
traces in the semantic model (i.e. an LTS  of (D U O U O`)).



Mine Pump Example

The controller of a mine pump is expected to monitor and 
control water levels in a mine, to prevent water overflow. It is 
composed of a pump for pumping mine-water up to the 
surface and sensors for monitoring the water levels and 
methane percentage. 

The pump must be activated once the water has reached pre-
set high water level and deactivated once it reaches low water 
level. 

Moreover, the pump must be switched off if the percentage of 
methane in the mine exceeds a certain critical limit.



Mine Pump Example

Goal:  Achieve[PumpOnWhenHighWaterAndNoMethane]  
Informal Definition: The pump shall be on when the water level is above high water 
level and there is no methane present in the mine
Formal Definition 
            (SYN)       ❏((HighWater ∧ ¬CriticalMethane) → ❍ PumpOn)

Domain Property: 
Operation: switchPumpOn
DomPre: ¬PumpOn    DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn    DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater    DomPost: HighWater

Positive Example Negative Example
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Coverage Check

Domain Property: 
Operation: switchPumpOn
DomPre: ¬PumpOn    DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn    DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater    DomPost: HighWater

Operational Requirement:

⊨

⊭

Domain Property: 
Operation: switchPumpOn
DomPre: ¬PumpOn    DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn    DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater    DomPost: HighWater

Operational Requirement:

?

?
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Coverage Check
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⊭
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Learned Requirements

⊭

Domain Property: 
Operation: switchPumpOn
DomPre: ¬PumpOn    DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn    DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater    DomPost: HighWater

Operation: switchPumpOff 

H2 = ReqPre: HighWater 
          ❏((HighWater) → ❍ ¬ switchPumpOff)

H3 = ReqPre: ¬CriticalMethane 
         ❏((¬CriticalMethane) → ❍ ¬ switchPumpOff)

H4= ReqPre: {} 
        ❏(❍ ¬ switchPumpOff)

Learning method returns 
minimal solution that would 
prevent s- from occurring

⊨

H1 = ReqPre: HighWater ∧ ¬CriticalMethane
       ❏((HighWater ∧ ¬CriticalMethane) → ❍ ¬ switchPumpOff)

Controller PumpSensors
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Operational Requirement:



Minimal == Optimal ?

Never switch the pump off 
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Requirement Optimisation

• Requirements are as good as the scenarios given

• Coverage of positive scenarios => 
                               Finding the minimal set of 
                               requirements that need to be 
                               true for the scenario to occur

• Coverage of negative scenarios => 
                              Finding the minimal set of 
                               requirements that need to be 
                               true for the scenario not to occur

•  More positive scenarios => less restrictive requirements



 Test cases & Learning: Symmetrical?

Generate Test 
Case(Negated) Specification

?

ConstraintsProgram

Hypothesis
Negative Examples

Positive Examples

Inductive
Learning

Background
Theory Constraints

Inductive Learning

Test Case
Generation



Test Case Generation

Given 

A program P, a set of constraints C and a specification S such that
                                  
                             
                                  P U S U C                 is consistent

Find
The smallest Test Case T such that

	
 	
                        P U T  ⊭ s                 for some s in S          
                                P U S U C U T          is consistent



Controlling the Search for an
Optimal Solution

• How to reduce the hypothesis search space? 
✦ Language bias (e.g. Mode declarations, Occam’s razor principle)
✦ Search bias (e.g. bottom-up, top-down)

• How much of the domain to capture in B?

• How to obtain E+ and E- that contribute to relevant solutions in 
the domain?
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