
Requirements Elaboration:
An Inductive Search Problem

Dalal Alrajeh
Department of Computing
Imperial College London

The 25th CREST Open Workshop: Requirements and Test Optimisation

February 12th, 2013

Requirements

!"#

Actor boundary

Low water
level

sensor

Detect low water
level

High water
level

sensor

Detect high
water level

Pump
controller

Methane
monitor

Monitor methane
level

Methane below
critical level

High water level
detected

,,,,,,,,,,,,

,,,,,,,,,,,
,

,,,,,,,,,,,,

Human
operator

Override
automatic pump

operation

Water level
between high

and lowManually switch
pump on Manually switch

pump off

Supervisor

Override
automatic pump

operation

Manually switch
pump on

Manually switch
pump off

Methane below
critical level

Methane below
critical level

Pump switched
on/off

Pump switched
on/off

,,,,
,,,,

,,,,

,,,,,,,,,,,,

Critical methane
level detected

Switch pump on

,,,,,,,,,,,,

,,,
,,,

,,,
,,,

Pump switched
on

Alarm switched
on

Low water level
detected

Pump switched
off

Switch pump off

Positive scenarios

Switch alarm on

,,,,,,,,,,,,

Switch alarm off

Alarm switched
off

Task

Goal

Actor

Task decomposition
(AND relationship)

Means-end
(OR relationship)

,,,,,,,,,,,, Dependency

PumpOnWhenHighWater

HighWaterDetected PumpOnWhenHighWaterDetected

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

Fixing the Terms

• Goals
Objectives to be achieved by system through agent
cooperation

• Domain Properties

Descriptive statements about the system (e.g., effect of
operations)

• Scenarios

How the software-to-be and its environment should and
should not interact (positive and negative)

• Operational Requirements

Constraints on the actions an agent can perform to achieve the

Controller PumpSensors Alarm

signalNoLowWater

signalCriticalMethane

startAlarm

switchPumpOn

Requirements to Operational Requirements

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

Operational requirements on software agents

❏(CriticalMethane → ❍ ¬ switchPumpOn)
❏((CriticalMethane ∧ PumpOn) → ❍ switchPumpOff)
❏(HighWater ∧ ¬ CriticalMethane ∧ ¬ PumpOn → ❍ switchPumpOn)
❏((HighWater ∧ ¬ CriticalMethane) → ❍ ¬ switchPumpOff)
❏(LowWater → ❍ ¬ switchPumpOn)
❏((LowWater ∧ PumpOn) → ❍ ¬ switchPumpOff)
❏((CriticalMethane ∧ ¬ Alarm) → ❍ raiseAlarm)
❏((¬ CriticalMethane ∧ Alarm) → ❍ stopAlarm)

PumpOnWhenHighWater

HighWaterDetected PumpOnWhenHighWaterDetec

Domain Property:
Operation: switchPumpOn
DomPre: ¬PumpOn
DomPost: PumpOn

Operational Requirements Elaboration

Elaborate Operational
requirements

Negative Scenarios

Positive Scenarios

Domain Properties

Gives AlternativesAutomated

Consistent and Correct

Sound

Goals

Inductive Learning (1)

Inductive Learning Hypothesis

Background
Theory

Negative Examples

Positive Examples

Constraints

Given:
✦ B (background theory)
✦ E+ (set of positive examples)
✦ E- (set of negative examples)
✦ IC (set of integrity constraints)

Find:
✦ H (hypothesis such that)

- B ⋃ H ⊨ E+

- B ⋃ H ⊭ E-

- B ⋃ H ⋃ IC is consistent

Theory Completion

The secret of flight

Given:

 B = {animal(X). bird(X). robin(a). pigeon(b).}
 E+ = {fly(a). fly(b).}
 E- = {}
 C = {⊥ ← bird(X), not animal(X).}

Search space includes
rules with the predicate
fly in the head and the
predicates bird and
penguin in the body.

Find:

 H1 = {fly(X) ← bird(X).}

H3 = {fly(X).}

H2 = {fly(X) ← animal(X).}

Optimal Solution is the smallest hypothesis that may be constructed

Inductive Learning (2)

Inductive Learning Hypothesis
Negative Examples

Positive Examples

Constraints

Background
+ Revisable

Theory

Given:
✦ B (background theory)
✦ R (revisable theory)
✦ E+ (set of positive examples)
✦ E- (set of negative examples)
✦ IC (set of integrity constraints)

Find:
✦ R` (revised theory such that)

- B ⋃ R` ⊨ E+

- B ⋃ R` ⊭ E-

- B ⋃ R` is consistent
- c(R, R`) is minimal

Theory Revision

The secret of flight

Given:

 B = {animal(X). bird(X). robin(A). pigeon(b). penguin(c).}
 E+ = {fly(a). fly(b).}
 E- = {fly(c).}
 IC = {⊥ ← bird(X), not animal(X).}
 R = {fly(X).}

Search space includes
rules with the predicate
fly in the head and the
predicates bird and
penguin in the body.

Find:

H1 = {fly(X) ← not penguin(X).}

 c(R,R`) = 1

Optimal Solution is the hypothesis with minimal changes min(c(R,R`))

revised

Elaboration & Learning: Symmetrical?

Inductive Learning Hypothesis
Negative Examples

Positive Examples

Elaborate Operational
requirements

Negative Scenarios

Positive Scenarios

GoalsDomain Properties
Requirements
Elaboration

Inductive
Learning

Constraints
Background

Theory

Learning Operational Requirements

Complete Operational
requirements

Negative Scenarios

Positive Scenarios

Domain Properties Goals

Operational
requirements

Dalal Alrajeh, Jeff Kramer, Alessandra Russo, Sebastian Uchitel. Learning Operational Requirements from Goal
Models, Proceedings of 31st International Conference on Software Engineering (ICSE'09), 265-275, 2009.

Learning Task

Given

A a set of domain properties D, a partial set of operational requirements O and
scenarios (S+ U S-) such that

 D U O ⊭ s+ for some s+ in S+

 D U O ⊨ s- for some s- in S-

 D U O U G is consistent

Find
The smallest set of operational requirements O` such that

	
 	
 D U O U O` ⊨ s+ for all s+ in S+

 D U O U O` ⊭s- for all s- in S-

 D U O U O` U G is consistent

where ⊨ is interpreted as the linear temporal logic satisfaction relation with respect to
traces in the semantic model (i.e. an LTS of (D U O U O`)).

Mine Pump Example

The controller of a mine pump is expected to monitor and
control water levels in a mine, to prevent water overflow. It is
composed of a pump for pumping mine-water up to the
surface and sensors for monitoring the water levels and
methane percentage.

The pump must be activated once the water has reached pre-
set high water level and deactivated once it reaches low water
level.

Moreover, the pump must be switched off if the percentage of
methane in the mine exceeds a certain critical limit.

Mine Pump Example

Goal: Achieve[PumpOnWhenHighWaterAndNoMethane]
Informal Definition: The pump shall be on when the water level is above high water
level and there is no methane present in the mine
Formal Definition
 (SYN) ❏((HighWater ∧ ¬CriticalMethane) → ❍ PumpOn)

Domain Property:
Operation: switchPumpOn
DomPre: ¬PumpOn DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater DomPost: HighWater

Positive Example Negative Example

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

Coverage Check

Domain Property:
Operation: switchPumpOn
DomPre: ¬PumpOn DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater DomPost: HighWater

Operational Requirement:

⊨

⊭

Domain Property:
Operation: switchPumpOn
DomPre: ¬PumpOn DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater DomPost: HighWater

Operational Requirement:

?

?

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

Coverage Check

⊨

⊭

?

?

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

switchPumpOn

aboveHigh

criticalMethane

switchPumpOn

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

noCriticalMethane

switchPumpOff

belowHigh

noCriticalMethane

switchPumpOff

belowHigh

criticalMethane

switchPumpOff

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

criticalMethane

switchPumpOff

aboveHigh

criticalMethane

0 1 2 3 4 5 6 7

switchPumpOn

aboveHigh

criticalMethane

switchPumpOn

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

noCriticalMethane

switchPumpOff

belowHigh

noCriticalMethane

switchPumpOff

belowHigh

criticalMethane

switchPumpOff

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

criticalMethane

switchPumpOff

aboveHigh

criticalMethane

0 1 2 3 4 5 6 7

Learned Requirements

⊭

Domain Property:
Operation: switchPumpOn
DomPre: ¬PumpOn DomPost: PumpOn
Operation: switchPumpOff
DomPre: PumpOn DomPost: ¬PumpOn
Operation: aboveHigh
DomPre: ¬ HighWater DomPost: HighWater

Operation: switchPumpOff

H2 = ReqPre: HighWater
 ❏((HighWater) → ❍ ¬ switchPumpOff)

H3 = ReqPre: ¬CriticalMethane
 ❏((¬CriticalMethane) → ❍ ¬ switchPumpOff)

H4= ReqPre: {}
 ❏(❍ ¬ switchPumpOff)

Learning method returns
minimal solution that would
prevent s- from occurring

⊨

H1 = ReqPre: HighWater ∧ ¬CriticalMethane
 ❏((HighWater ∧ ¬CriticalMethane) → ❍ ¬ switchPumpOff)

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

Controller PumpSensors

aboveLow

aboveHigh

switchPumpOn

switchPumpOff

Operational Requirement:

Minimal == Optimal ?

Never switch the pump off

switchPumpOn

aboveHigh

criticalMethane

switchPumpOn

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

noCriticalMethane

belowHigh

noCriticalMethane

belowHigh

criticalMethane

aboveHigh

noCriticalMethane

switchPumpOn

belowHigh

criticalMethane

aboveHigh

criticalMethane

0 1 2 3 4 5 6 7

Requirement Optimisation

• Requirements are as good as the scenarios given

• Coverage of positive scenarios =>
 Finding the minimal set of
 requirements that need to be
 true for the scenario to occur

• Coverage of negative scenarios =>
 Finding the minimal set of
 requirements that need to be
 true for the scenario not to occur

• More positive scenarios => less restrictive requirements

 Test cases & Learning: Symmetrical?

Generate Test
Case(Negated) Specification

?

ConstraintsProgram

Hypothesis
Negative Examples

Positive Examples

Inductive
Learning

Background
Theory Constraints

Inductive Learning

Test Case
Generation

Test Case Generation

Given

A program P, a set of constraints C and a specification S such that

 P U S U C is consistent

Find
The smallest Test Case T such that

	
 	
 P U T ⊭ s for some s in S
 P U S U C U T is consistent

Controlling the Search for an
Optimal Solution

• How to reduce the hypothesis search space?
✦ Language bias (e.g. Mode declarations, Occam’s razor principle)
✦ Search bias (e.g. bottom-up, top-down)

• How much of the domain to capture in B?

• How to obtain E+ and E- that contribute to relevant solutions in
the domain?

Acknowledgements

- Sebastian Uchitel, Imperial College London

- Jeff Kramer, Imperial College London

- Alessandra Russo, Imperial College London

- Axel van Lamsweerde, UCL, Belgium

References

Dalal Alrajeh, Jeff Kramer, Alessandra Russo and Sebastian Uchitel. Elaborating Requirements using
Model Checking and Inductive Learning. In IEEE Transactions on Software Engineering, 2012.

Dalal Alrajeh, Jeff Kramer, Axel van Lamsweerde, Alessandra Russo and Sebastian Uchitel. Generating
Obstacle Conditions for Requirements Completeness. Proceedings of 34th International Conference on
Software Engineering (ICSE'12), 705-0715, 2012.

Dalal Alrajeh, Jeff Kramer, Alessandra Russo and Sebastian Uchitel Learning from Vacuously Satisfiable
Scenario-based Specifications. Proceedings of 15th International Conference on Fundamental
Approaches to Software Engineering (FASE'12), 377-393, 2012.

Dalal Alrajeh, Jeff Kramer, Alessandra Russo and Sebastian Uchitel An Inductive Approach for Modal
Transition Systems Refinement, Technical Communications of the 27th International Conference on Logic
Programming (ICLP'11), 106-116, 2011.

Dalal Alrajeh, Jeff Kramer, Alessandra Russo, Sebastian Uchitel. Learning Operational Requirements
from Goal Models, Proceedings of 31st International Conference on Software Engineering (ICSE'09),
265-275, 2009.

Thank You

