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Motivation: why optimise?

✤ Easier than building a perfect solution

✤ Computational power: fast, scalable

✤ Data-driven, quantitative

✤ Insightful; allows holistic observation of problem space



“The heavy use of computer analysis has pushed the 
game itself in new directions. The machine doesn't 
care about style or patterns or hundreds of years of 
established theory. It is entirely free of prejudice and 
doctrine and this has contributed to the development 
of players who are almost as free of dogma as the 
machines with which they train. (...) Although we 
still require a strong measure of intuition and logic to 
play well, humans today are starting to play more 
like computers.” 

- Gary Kasparov, “The Chess Master and the Computer”



Application Areas

Regression Testing
Requirement Analysis

Test Data Generation

Project Management

Refactoring
Fault Localisation

Model Checking

Agent-based System
Automated Patch Generation

Software Design Tools

... still expanding with many more to come



Application Areas

Tier 1 Tier 2
Combinatorial problems

in SE context
Problems that are

specific to SE

Regression Testing
Requirement Analysis Test Data Generation

Project Management

Refactoring
Fault Localisation

Model Checking
Agent-based System

Automated Patch Generation

Software Design ToolsPrioritisation
Set-cover

Bin-packing



Case Study: Requirements

✤ “What is the most cost-effective subset of software requirements to 
be included in the next version?”

✤ “What is the most efficient release schedule?”

✤ “Are customers treated fairly?”



Requirements: selection

✤ Underlying problem structure: knapsack problem

✤ Requirements value: based on customer input, customer value, 
expected revenue, etc

✤ Requirement cost: development cost, time, etc

✤ Goal: minimise cost, maximise value



Requirements: selection



Requirements: fairness

(a) Motorola Data Set: (b) Motorola Data Set: (c) Motorola Data Set:
4 customers; 35 requirements 4 customers; 35 requirements 4 customers; 35 requirements

30% resource limitation 50% resource limitation 70% resource limitation

(d) Greer & Ruhe Data Set: (e) Greer & Ruhe Data Set: (f) Greer & Ruhe Data Set:
5 customers; 20 requirements 5 customers; 20 requirements 5 customers; 20 requirements

30% resource limitation 50% resource limitation 70% resource limitation

Figure 1. Kiviat diagrams for illustrative budget values

(a) Motorola Data Set (b) Greer & Ruhe Data Set

Figure 2. Tensions between the Customers’ Satisfaction for Different Budgetary Resource Con-
straints



Case Study: Test Suite 
Minimisation

✤ The Problem: Your regression test suite is too large.

✤ The Idea: There must be some redundant test cases.

✤ The Solution: Minimise (or reduce) your regression test suite by 
removing all the redundant tests.



Minimisation

Seeks to reduce the size of test suites
while satisfying test adequacy goals

R1 R2 R3 R4

T1 T2 T3

✓ ✓ ✓✓



Minimisation

Usually the information you need can be 
expressed as a matrix.

r0 r1 r2 ...
t0 1 1 0
t1 0 1 0
t2 0 0 1
...

Your tests

Things to tick off
(branches, statements, 
DU-paths, etc)



Minimisation

✤ This is a set cover problem, which is NP-complete.

✤ Greedy heuristic is known to be within bounded error from the 
optimal solution.

✤ Problem solved?
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Additional Greedy

Pareto Frontier

Test Case
Program BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram Blocks

TimeTest Case
1 2 3 4 5 6 7 8 9 10

Time

T1 x x x x x x x x 4

T2 x x x x x x x x x 5

T3 x x x x 3

T4 x x x x x 3

Single Objective

Choose test case with highest block 
per time ratio as the next one

1) T1 (ratio = 2.0)
2) T2 (ratio = 2 / 5 = 0.4)

∴ {T1, T2} (takes 9 hours)

“But we only have 7 hours...?”

Multi Objective



Faster Fault Finding at Google Using Multi-Objective Regression Test Optimisation
Shin Yoo, Robert Nilsson, and Mark Harman, FSE2011 (Supported by Google Research Award: MORTO)



Benefits of Abstraction

Requirements

Design

Implementation

Integration

Testing

Maintenance

subset selection prioritisationsubset selection prioritisation

Reformulating SE problems 
into optimisation problems
reveals hidden similarities



Benefits of Abstraction

✤ Analytic Hierarchical Process: first used in Requirement Engineering, 
now also used for regression test prioritisation

✤ Average Percentage of Fault Detection: metric devised for regression 
test prioritisation, now being recast for prioritisation or requirements



✤ Fitness function for branch coverage = [approximation level] + 
normalise([branch distance])

✤ For a target branch and a given path that does not cover the target:

✤ Approximation level: number of un-penetrated nesting levels 
surrounding the target

✤ Branch distance: how close the input came to satisfying the 
condition of the last predicate that went wrong

Search-Based Testing



✤ If you want to satisfy the predicate x == y, you convert this to 
branch distance of b = |x - y| and seek the values of x and y that 
minimise b to 0

✤ then you will have x and y that are equal to each other

✤ If you want to satisfy the predicate y >= x, you convert this to 
branch distance of b = x - y + K and seek the values of x and y 
that minimise b to 0

✤ then you will have y that is larger than x by K

✤ Normalise b to 1 - 1.001^(-b)

Branch Distance



Predicate f minimise until..
a > b b - a + K f < 0

a >= b b - a + K f <= 0
a < b a - b + K f < 0

a <= b a - b + K f <= 0
a == b |a - b| f == 0
a != b -|a - b| f < 0

B. Korel, “Automated software test data generation,” IEEE Trans. Softw. Eng., vol. 16, pp. 
870–879, August 1990.

Branch Distance



if(c >= 4)

if(c <= 10)

if(a == b)

target

Test input (a, b, c), K = 1

(11, 2, 1)
Falseapp. lvl = 2

b. dist = 4 - c +1
f = 2 + (1 - 1.001^-4) = 2.004

False

True

False

True

True

(11, 2, 11)
app. lvl = 1

b. dist = c - 10 + 1
f = 1 + (1 - 1.001^-2) = 1.001 

(11, 2, 9)
app. lvl =0

b. dist = |11 - 2|
f = 0 + (1 - 1.001^-9) = 0.009 

(2, 2, 9)

app. lvl =0
b. dist = |2 - 2|

f = 0 + (1 - 1.001^0) = 0

Fitness Function



if(c == 4)

False
True

✤ Hill Climbing

✤ start with random 
value

✤ calculate fitness

✤ check out neighbours

✤ if there is a fitter 
neighbour, move

✤ repeat until succeed

c = 7: b. dist = 3, norm. = 1 - 1.001^-3 = 0.0029

Target

neighbours of 7: 6 and 8

c = 6: b. dist = 2, norm. = 1 - 1.001^-2 = 0.0019

c = 8: b. dist = 4, norm. = 1 - 1.001^-4 = 0.0039

so we move to 6 and consider 5 and 7

...

An Example of Search Algorithm



Case Study: Fault Localisation

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

P

T

S

P

T

S
GP

Fitness 
(minimise)

e2f (2ep + 2ef + 3np)

e2f (e
2
f +

p
np)

. . .

Training Data



Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05

GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96

GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69

GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69

GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from groupX has higher/lower value than another
single case randomly taken from group Y . For A(X > Y ), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y ).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Case Study: Fault Localisation

✤ Green: GP outperforms the 
other.

✤ Orange: GP exactly matches the 
other.

✤ Red: The other outperforms GP.

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.
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Think Hard

Write Formula

Experiment

The most effective way to do it, 
is to do it.

✤ GP provides a structured, 
automated way of doing 
iterative design.

✤ It can cope with a much diverse 
spectra and other meta-data.

✤ GP can evolve a technique that 
suits your project.

Genetic Op.

Evaluate

Select

Human GP

Spectrum Spectrum

Change Hist.

Dependency

Spectrum

Change Hist.

Dependency



Optimisation Techniques

✤ Genetic Algorithm: versatile, most popular (cool factor?)

✤ Hill climbing, Simulated Annealing: often as competitive as, or even 
better than, GA

✤ Exact methods: least widely used - scalable? flexible? multi-
objectiveness?



Future Directions



Multi-Objective Paradigm

✤ Already explored in testing and requirements, others to follow

✤ Copes with complex constraints

✤ Works well when there are multiple surrogate fitness



Interactivity

✤ Relatively unexplored due to 
the high cost of human input

✤ Eliciting human knowledge

✤ Resolving ambiguities that 
are hard to quantise

✤ Using unconventional 
interfaces



Getting Fuzzier!

✤ Get out of the classical combinatorial problem box

✤ NLP, Information Theory, Probabilistic Modelling, etc



Kasparov’s Advanced Chess

✤ Competition between teams consist of human + chess software

✤ It looks very similar to our goal in a lot of ways...



Kasparov’s Advanced Chess

✤ “..being able to access a database of a few million games meant that 
we didn't have to strain our memories nearly as much in the 
opening..”

✤ “Having a computer partner also meant never having to worry about 
making a tactical blunder.”

✤ “Weak human + machine + better process was superior to a strong 
computer alone and, more remarkably, superior to a strong human + 
machine + inferior process.”



The Ultimate Goal

✤ Our final goal is not to replace human decision making process; it is 
to aid the process with an unbiased alternative and an insight into 
the problem structure
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