
Date 30/01/2013 The 24th CREST Open Workshop

An Overview of Search Based Software Engineering
Shin Yoo / CREST

Pair-programming

Outline

✤ Motivation

✤ Application Areas

✤ Requirement Engineering/Test Suite Minimisation

✤ Test Data Generation/Fault Localisation Techniques

✤ Future Directions

Motivation: why optimise?

✤ Easier than building a perfect solution

✤ Computational power: fast, scalable

✤ Data-driven, quantitative

✤ Insightful; allows holistic observation of problem space

“The heavy use of computer analysis has pushed the
game itself in new directions. The machine doesn't
care about style or patterns or hundreds of years of
established theory. It is entirely free of prejudice and
doctrine and this has contributed to the development
of players who are almost as free of dogma as the
machines with which they train. (...) Although we
still require a strong measure of intuition and logic to
play well, humans today are starting to play more
like computers.”

- Gary Kasparov, “The Chess Master and the Computer”

Application Areas

Regression Testing
Requirement Analysis

Test Data Generation

Project Management

Refactoring
Fault Localisation

Model Checking

Agent-based System
Automated Patch Generation

Software Design Tools

... still expanding with many more to come

Application Areas

Tier 1 Tier 2
Combinatorial problems

in SE context
Problems that are

specific to SE

Regression Testing
Requirement Analysis Test Data Generation

Project Management

Refactoring
Fault Localisation

Model Checking
Agent-based System

Automated Patch Generation

Software Design ToolsPrioritisation
Set-cover

Bin-packing

Case Study: Requirements

✤ “What is the most cost-effective subset of software requirements to
be included in the next version?”

✤ “What is the most efficient release schedule?”

✤ “Are customers treated fairly?”

Requirements: selection

✤ Underlying problem structure: knapsack problem

✤ Requirements value: based on customer input, customer value,
expected revenue, etc

✤ Requirement cost: development cost, time, etc

✤ Goal: minimise cost, maximise value

Requirements: selection

Requirements: fairness

(a) Motorola Data Set: (b) Motorola Data Set: (c) Motorola Data Set:
4 customers; 35 requirements 4 customers; 35 requirements 4 customers; 35 requirements

30% resource limitation 50% resource limitation 70% resource limitation

(d) Greer & Ruhe Data Set: (e) Greer & Ruhe Data Set: (f) Greer & Ruhe Data Set:
5 customers; 20 requirements 5 customers; 20 requirements 5 customers; 20 requirements

30% resource limitation 50% resource limitation 70% resource limitation

Figure 1. Kiviat diagrams for illustrative budget values

(a) Motorola Data Set (b) Greer & Ruhe Data Set

Figure 2. Tensions between the Customers’ Satisfaction for Different Budgetary Resource Con-
straints

Case Study: Test Suite
Minimisation

✤ The Problem: Your regression test suite is too large.

✤ The Idea: There must be some redundant test cases.

✤ The Solution: Minimise (or reduce) your regression test suite by
removing all the redundant tests.

Minimisation

Seeks to reduce the size of test suites
while satisfying test adequacy goals

R1 R2 R3 R4

T1 T2 T3

✓ ✓ ✓✓

Minimisation

Usually the information you need can be
expressed as a matrix.

r0 r1 r2 ...
t0 1 1 0
t1 0 1 0
t2 0 0 1
...

Your tests

Things to tick off
(branches, statements,
DU-paths, etc)

Minimisation

✤ This is a set cover problem, which is NP-complete.

✤ Greedy heuristic is known to be within bounded error from the
optimal solution.

✤ Problem solved?

0 2 4 6 8 10

Execution Time

0

20

40

60

80

100

C
o
v
e
ra

g
e
(%

)

Additional Greedy

Pareto Frontier

Test Case
Program BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram BlocksProgram Blocks

TimeTest Case
1 2 3 4 5 6 7 8 9 10

Time

T1 x x x x x x x x 4

T2 x x x x x x x x x 5

T3 x x x x 3

T4 x x x x x 3

Single Objective

Choose test case with highest block
per time ratio as the next one

1) T1 (ratio = 2.0)
2) T2 (ratio = 2 / 5 = 0.4)

∴ {T1, T2} (takes 9 hours)

“But we only have 7 hours...?”

Multi Objective

Faster Fault Finding at Google Using Multi-Objective Regression Test Optimisation
Shin Yoo, Robert Nilsson, and Mark Harman, FSE2011 (Supported by Google Research Award: MORTO)

Benefits of Abstraction

Requirements

Design

Implementation

Integration

Testing

Maintenance

subset selection prioritisationsubset selection prioritisation

Reformulating SE problems
into optimisation problems
reveals hidden similarities

Benefits of Abstraction

✤ Analytic Hierarchical Process: first used in Requirement Engineering,
now also used for regression test prioritisation

✤ Average Percentage of Fault Detection: metric devised for regression
test prioritisation, now being recast for prioritisation or requirements

✤ Fitness function for branch coverage = [approximation level] +
normalise([branch distance])

✤ For a target branch and a given path that does not cover the target:

✤ Approximation level: number of un-penetrated nesting levels
surrounding the target

✤ Branch distance: how close the input came to satisfying the
condition of the last predicate that went wrong

Search-Based Testing

✤ If you want to satisfy the predicate x == y, you convert this to
branch distance of b = |x - y| and seek the values of x and y that
minimise b to 0

✤ then you will have x and y that are equal to each other

✤ If you want to satisfy the predicate y >= x, you convert this to
branch distance of b = x - y + K and seek the values of x and y
that minimise b to 0

✤ then you will have y that is larger than x by K

✤ Normalise b to 1 - 1.001^(-b)

Branch Distance

Predicate f minimise until..
a > b b - a + K f < 0

a >= b b - a + K f <= 0
a < b a - b + K f < 0

a <= b a - b + K f <= 0
a == b |a - b| f == 0
a != b -|a - b| f < 0

B. Korel, “Automated software test data generation,” IEEE Trans. Softw. Eng., vol. 16, pp.
870–879, August 1990.

Branch Distance

if(c >= 4)

if(c <= 10)

if(a == b)

target

Test input (a, b, c), K = 1

(11, 2, 1)
Falseapp. lvl = 2

b. dist = 4 - c +1
f = 2 + (1 - 1.001^-4) = 2.004

False

True

False

True

True

(11, 2, 11)
app. lvl = 1

b. dist = c - 10 + 1
f = 1 + (1 - 1.001^-2) = 1.001

(11, 2, 9)
app. lvl =0

b. dist = |11 - 2|
f = 0 + (1 - 1.001^-9) = 0.009

(2, 2, 9)

app. lvl =0
b. dist = |2 - 2|

f = 0 + (1 - 1.001^0) = 0

Fitness Function

if(c == 4)

False
True

✤ Hill Climbing

✤ start with random
value

✤ calculate fitness

✤ check out neighbours

✤ if there is a fitter
neighbour, move

✤ repeat until succeed

c = 7: b. dist = 3, norm. = 1 - 1.001^-3 = 0.0029

Target

neighbours of 7: 6 and 8

c = 6: b. dist = 2, norm. = 1 - 1.001^-2 = 0.0019

c = 8: b. dist = 4, norm. = 1 - 1.001^-4 = 0.0039

so we move to 6 and consider 5 and 7

...

An Example of Search Algorithm

Case Study: Fault Localisation

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

P

T

S

P

T

S
GP

Fitness
(minimise)

e2f (2ep + 2ef + 3np)

e2f (e
2
f +

p
np)

. . .

Training Data

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05

GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96

GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69

GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69

GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from groupX has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Case Study: Fault Localisation

✤ Green: GP outperforms the
other.

✤ Orange: GP exactly matches the
other.

✤ Red: The other outperforms GP.

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

O
p1

O
p2

O
ch

ia
i

A
M

PL
E

Ja
cc

ar
d

Ta
ra

nt
ul

a

W
on

g1

W
on

g2

W
on

g3

⟵
30

 G
P

Ru
ns
⟶

Think Hard

Write Formula

Experiment

The most effective way to do it,
is to do it.

✤ GP provides a structured,
automated way of doing
iterative design.

✤ It can cope with a much diverse
spectra and other meta-data.

✤ GP can evolve a technique that
suits your project.

Genetic Op.

Evaluate

Select

Human GP

Spectrum Spectrum

Change Hist.

Dependency

Spectrum

Change Hist.

Dependency

Optimisation Techniques

✤ Genetic Algorithm: versatile, most popular (cool factor?)

✤ Hill climbing, Simulated Annealing: often as competitive as, or even
better than, GA

✤ Exact methods: least widely used - scalable? flexible? multi-
objectiveness?

Future Directions

Multi-Objective Paradigm

✤ Already explored in testing and requirements, others to follow

✤ Copes with complex constraints

✤ Works well when there are multiple surrogate fitness

Interactivity

✤ Relatively unexplored due to
the high cost of human input

✤ Eliciting human knowledge

✤ Resolving ambiguities that
are hard to quantise

✤ Using unconventional
interfaces

Getting Fuzzier!

✤ Get out of the classical combinatorial problem box

✤ NLP, Information Theory, Probabilistic Modelling, etc

Kasparov’s Advanced Chess

✤ Competition between teams consist of human + chess software

✤ It looks very similar to our goal in a lot of ways...

Kasparov’s Advanced Chess

✤ “..being able to access a database of a few million games meant that
we didn't have to strain our memories nearly as much in the
opening..”

✤ “Having a computer partner also meant never having to worry about
making a tactical blunder.”

✤ “Weak human + machine + better process was superior to a strong
computer alone and, more remarkably, superior to a strong human +
machine + inferior process.”

The Ultimate Goal

✤ Our final goal is not to replace human decision making process; it is
to aid the process with an unbiased alternative and an insight into
the problem structure

References

✤ M. Harman, S. A. Mansouri, and Y. Zhang. Search based software engineering: A comprehensive
analysis and review of trends techniques and applications. Technical Report TR-09-03,
Department of Computer Science, King’s College London, April 2009.

✤ Y. Zhang, M. Harman, and S. A. Mansouri. The Multi-Objective Next Release Problem. In
GECCO ’07: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, pages
1129–1136. ACM Press, 2007.

✤ S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA 2007), pages 140–150. ACM
Press, July 2007.

✤ S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable
prioritisation incorporating expert knowledge. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA 2009), pages 201–211. ACM Press, July 2009.

✤ Gary Kasparov, “The Chess Master and the Computer”, The New York Review of Books, http://
www.nybooks.com/articles/23592

http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592

