An Overview of Search Based Software Engineering
Shin Yoo / CREST

Date 30/01/2013 The 24th CREST Open Workshop

Pair-programming

Outlhine

* Motivation

* Application Areas
* Requirement Engineering / Test Suite Minimisation
* Test Data Generation/Fault Localisation Techniques

+ Future Directions

Mouvation: why optimise?

Easier than building a perfect solution
Computational power: fast, scalable
Data-driven, quantitative

Insightful; allows holistic observation of problem space

“The heavy use of computer analysis has pushed the
game itself in new directions. The machine doesn't
care about style or patterns or hundreds of years of
established theory. It is entirely free of prejudice and
doctrine and this has contributed to the c deent
of players who are almost as free of dogma as the

machines with which they train. (...) Although we
still require a strong measure of intuition and logic to
play well, humans today are starting to play more
like computers.”

- Gary Kasparov, “The Chess Master and the Computer”

Application Areas

Requirement Analysis Model Checking
Test Data Generation Regression Testing
Refactoring Software Design Tools
Fault Localisation Agent-based System

Automated Patch Generation Project Management

... still expanding with many more to come

Application Areas

Tier 1

Combinatorial problems
in SE context

RequiteehentvAmalysis
Repressitnateshng
ProjBinMpankgegent

Tier 2

Problems that are

specific to SE

Test Data Generation

Sotftware Design Tools
Model Checking
Agent-based System

Refactoring

Fault Loca.

1sation

Automated Patcl

n Generation

Case Study: Requirements

“What is the most cost-effective subset of software requirements to
be included in the next version?”

“What is the most efficient release schedule?”

“ Are customers treated fairly?”

Requirements: selection

* Underlying problem structure: knapsack problem

* Requirements value: based on customer input, customer value,
expected revenue, etc

* Requirement cost: development cost, time, etc

* Goal: minimise cost, maximise value

1011

—
-
O

prm—
<>
9p

Requirements

NSGA-II

~
7

Pareto GA

Random search

Single-Objective GA

(d) 100 customers; 20 requirements

Requirements: fairness

N N . .
N N . p .
N N . P .
N N g S g
N N . / .

N N . . .

s Nl . .

N N g 7/

N 7 .

D g .

N .

D 7/ .

N\~ .

N / .

.
.
"
4
4
1/

(a) Motorola Data Set: (b) Motorola Data Set: (¢c) Motorola Data Set:
4 customers; 35 requirements 4 customers; 35 requirements 4 customers; 35 requirements
30% resource limitation 50% resource limitation 70% resource limitation

Case Study: Test Suite

Minimmisation

* The Problem: Your regression test suite is too large.
+* The Idea: There must be some redundant test cases.

* The Solution: Minimise (or reduce) your regression test suite by
removing all the redundant tests.

Minimmisation

Seeks to reduce the size of test suites
while satisfying test adequacy goals

ess
00O

v

Minimmisation

— Things to tick off

(branches, statements,
DU-paths, etc)

Your tests

Usually the information you need can be
expressed as a matrix.

Minimmisation

* This is a set cover problem, which is NP-complete.

* Greedy heuristic is known to be within bounded error from the
optimal solution.

* Problem solved?

Program Blocks
4 | 5| 6

Test Case

T1
T2

X X X

X X X

T3
T4

Single Objective Multi Objective

Choose test case with highest block
per time ratio as the next one

- -l - Additional Greedy
+ Pareto Frontier

(9]
(@]

1) T1 (ratio = 2.0)
)/

2) T2 (ratio = 5 =0.4)

Coverage(%)

N
o

s {T1, T2} (takes 9 hours)

“But we only have 7 hours...?” Seesentine

CL 15280453

‘ ‘“’ ®
Y

RS
. »

0% 803':’

885 & m = x

o .O.Q XXX X X
% © Lxx X X

(o]
o .0 x XEX X
§ x x x

= X x -

XX OxX

© cone-coverage
x number of test targets

T T TR
1000 2000 3000 4000 5000

cpu time(sec)
Total #/cost from deps:58/17556, 1 failed

min.time for faill time for max. cov. total cpu time

Faster Fault Finding at Google Using Multi-Objective Regression Test Optimisation
Shin Yoo, Robert Nilsson, and Mark Harman, FSE2011 (Supported by Google Research Award: MORTO)

Benefits of Abstraction

Requirements subset selection prioritisation
Design

pgEaEeGtol — Reformulating SE problems
into optimisation problems
Integration reveals hidden similarities

Testing

Maintenance

Benefits of Abstraction

* Analytic Hierarchical Process: first used in Requirement Engineering,
now also used for regression test prioritisation

* Average Percentage of Fault Detection: metric devised for regression
test prioritisation, now being recast for prioritisation or requirements

Search-Based lTesting

* Fitness function for branch coverage = [approximation level] +
normalise([branch distance])

* For a target branch and a given path that does not cover the target:

* Approximation level: number of un-penetrated nesting levels
surrounding the target

* Branch distance: how close the input came to satisfying the
condition of the last predicate that went wrong

Branch Distance

[f you want to satisfy the predicate x == y, you convert this to
branch distance of b = |x - y| and seek the values of x and y that
minimise b to 0

* then you will have x and y that are equal to each other

[f you want to satisfy the predicate y >= x, you convert this to
branch distance of b = x - y + K and seek the values of x and y
that minimise b to 0

* then you will have y that is larger than x by K

Normalisebtol - 1.001" (-b)

Branch Distance

Predicate f minimise until..

2 b-a+K =0

a>=D>b b-a+K f <=0

a<b a-b+ K fitelll)

b a-b+K =

b la-Dbl —

-la-bl f<0

B. Korel, “Automated software test data generation,” IEEE Trans. Softw. Eng., vol. 16, pp.
870-879, August 1990.

Fitness Function

l

(il 22, 10

app. lvl=2 False
b. dist=4-c +1
f=2+(1-1.001"-4)=2.004 app. vl =0

b. dist=12-2]
fi= 0+ (1°-"T:001 0=

(11, 2, 11) False
app. lvl=1 (2, 2, 9)

b.dist=c-10+1

f=1+(1-1.001~-2)=1.001
False

(29

app. lvl =0
b. dist= 111 - 2|
SRRSO OIS0 S (09

Test input (a, b, c), K=1

An Example of Search Algorithm

* Hill Climbing

start with random
value

calculate fitness

check out neighbours

if there is a fitter
neighbour, move

repeat until succeed

l

c="7:b.dist =3, norm. =1 -1.001"-3 = 0.0029
neighbours of 7: 6 and 8

¢ = 6:'b. dist =2 ‘norm. =1 -5 001722 =001
c=8:b.dist=4, norm.=1-1.001"-4 = 0.0039

so we move to 6 and consider 5 and 7

Case Study: Fault Localisation

ef (2e, + 2ey —|— 3n,)
a) €f €f ‘}ep\]%a—Fl

Program Spectrum Risk Evaluation Formula

Training D ta

Fitness
(minimise)

Ranking

Case Study: Fault Localisation

HEFO — N o
e B = o = S e

—

. e ©
Do, GBRy Opl B2 OchiFFAMPLE Jacc'd Larant. Wongl Woms2 Wong

cbdt 573 9.20 G0 32.6€ 10908 6.10—15.06 24 [£10 6

GP02 12.04 9.67 5.72 3260 1191 6.63 1492 2345 19.49 892

Green: GP outperforms the
other.

Orange: GP exactly matches the
other.

Red: The other outperforms GP.

[
&N
o
=,
a4
an
&
o=
O
l

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

The most effective way to do 1t,
1s to do 1t.

Dependency

Change Hist.

* GP provides a structured, m
automated way of doing

1terative deﬂg“- Think Hard Genetic Op.

* It can cope with a much diverse
spectra and other meta-data.

Write Formula

* GP can evolve a technique that
suits your project.

Optimisation Techniques

* Genetic Algorithm: versatile, most popular (cool factor?)

* Hill climbing, Simulated Annealing: often as competitive as, or even
better than, GA

* Exact methods: least widely used - scalable? flexible? multi-
objectiveness?

Future Directions

Mulu-Objective Paradigm

* Already explored in testing and requirements, others to follow
* Copes with complex constraints

* Works well when there are multiple surrogate fitness

Interactivity

* Relatively unexplored due to
the high cost of human input

* Eliciting human knowledge

* Resolving ambiguities that
are hard to quantise

* Using unconventional
interfaces

Getting Fuzzier!

* Get out of the classical combinatorial problem box

* NLP, Information Theory, Probabilistic Modelling, etc

Kasparov’s Advanced Chess

* Competition between teams consist of human + chess software

* It looks very similar to our goal in a lot of ways...

Kasparov's Advanced Chess

“..being able to access a database of a few million games meant that
we didn't have to strain our memories nearly as much in the
opening..”

“Having a computer partner also meant never having to worry about
making a tactical blunder.”

“Weak human + machine + better process was superior to a strong
computer alone and, more remarkably, superior to a strong human +
machine + inferior process.”

The Ulumate Goal

* Qur final goal is not to replace human decision making process; it is
to aid the process with an unbiased alternative and an insight into
the problem structure

References

M. Harman, S. A. Mansouri, and Y. Zhang. Search based software engineering: A comprehensive
analysis and review of trends techniques and applications. Technical Report TR-09-03,
Department of Computer Science, King’s College London, April 20009.

Y. Zhang, M. Harman, and S. A. Mansouri. The Multi-Objective Next Release Problem. In
GECCO ’07: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, pages
1129-1136. ACM Press, 2007.

S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA 2007), pages 140-150. ACM
Press, July 2007.

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable
prioritisation incorporating expert knowledge. In Proceedings of International Symposium on
Software Testing and Analysis (ISSTA 2009), pages 201-211. ACM Press, July 20009.

Gary Kasparov, “The Chess Master and the Computer”, The New York Review of Books, http:/ /
www.nybooks.com /articles /23592

http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592

