
Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based
Search

David Silver

Reinforcement Learning and Simulation-Based Search

Outline

1 Reinforcement Learning

2 Simulation-Based Search

3 Planning Under Uncertainty

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning

Markov Decision Process

Definition

A Markov Decision Process is a tuple 〈S,A,P,R〉
S is a finite set of states

A is a finite set of actions

P is a state transition probability matrix, Pa
ss′ = P [s ′ | s, a]

R is a reward function, Ra
s = E [r | s, a]

Assume for this talk that all sequences terminate, γ = 1

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning

Planning and Reinforcement Learning

Planning:
Given MDP M, maximise expected future reward

Reinforcement Learning:
Given sample sequences from MDP

{s1, a
k
1 , r

k
1 , s

k
2 , a

k
2 , ..., s

k
TK }Kk=1 ∼M

Maximise expected future reward

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Simulation-Based Search

A simulatorM is a generative model of an MDP

Given a state st and action at
The simulator can generate a next state st+1 and reward rt+1

A simulator can be used to generate sequences of experience

Starting from any “root” state s1

{s1, a1, r1, s2, a2, ..., sT} ∼ M

Simulation-based search applies reinforcement learning to
simulated experience

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Simulation

Given a model M and a simulation policy

π(s, a) = Pr(a | s)

Simulate K episodes from root state s1

{s1, a
k
1 , r

k
1 , s

k
2 , a

k
2 , ..., s

k
TK }Kk=1 ∼M, π

Evaluate state by mean total reward (Monte-Carlo evaluation)

V (s1) =
1

K

K∑
k=1

TK∑
t=1

rkt
P→ E

TK∑
t=1

rkt

∣∣∣∣∣ s1

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

Simple Monte-Carlo Search

Given a model M and a simulation policy π

For each action a ∈ A
Simulate K episodes from root state st

{s1, a, a
k
1 , r

k
1 , s

k
2 , a

k
2 , ..., s

k
T}Kk=1 ∼M, π

Evaluate actions by mean total reward

Q(s1, a) =
1

K

K∑
k=1

TK∑
t=1

rkt
P→ E

 TK∑
t=1

rkt

∣∣∣∣∣ s1, a

Select real action with maximum value

at = argmax
a∈A

Q(st , a)

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

Monte-Carlo Tree Search

Simulate sequences starting from root state s1

Build a search tree containing all visited states

Repeat (each simulation)

Evaluate states V (s) by mean total reward of all sequences
through node s
Improve simulation policy by picking child s ′ with max V (s ′)

Converges on the optimal search tree, V (s)→ V ∗(s)

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

0/1 6/7 2/3

3/4 0/1 1/12/2

0/1 2/2 1/1

1/1

01111111 1 100

9/12 root

search tree

roll-outs

reward

max

min

max

min

max

a1 a2 a3

b1 b3 b1 b2

a1 a3 a1

b1

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

Advantages of MC Tree Search

Highly selective best-first search

Focused on the future

Uses sampling to break curse of dimensionality

Works for “black-box” simulators (only requires samples)

Computationally efficient, anytime, parallelisable

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Monte-Carlo Search

Disadvantages of MC Tree Search

Monte-Carlo estimates have high variance

No generalisation between related states

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Temporal-Difference Search

Temporal-Difference Search

Simulate sequences starting from root state s1

Build a search tree containing all visited states

Repeat (each simulation)

Evaluate states V (s) by temporal-difference learning
Improve simulation policy by picking child s ′ with max V (s ′)

Converges on the optimal search tree, V (s)→ V ∗(s)

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Temporal-Difference Search

Linear Temporal-Difference Search

Simulate sequences starting from root state s1

Build a linear function approximator V (s) = φ(s)>θ
over all visited states

Repeat (each simulation)

Evaluate states V (s) by linear temporal-difference learning
Improve simulation policy by picking child s ′ with max V (s ′)

Reinforcement Learning and Simulation-Based Search

Simulation-Based Search

Temporal-Difference Search

Demo

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Planning Under Uncertainty

Consider a history ht of actions, observations and rewards

h = a1, o1, r1, ..., at , ot , rt

What if the state s is unknown?

i.e. we only have some beliefs b(s) = P(s | ht)
What if the MDP dynamics P are unknown?

i.e. we only have some beliefs b(P) = p(P | ht)
What if the MDP reward function R is unknown?

i.e. we only have some beliefs b(R) = p(R | ht)

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Belief State MDP

Plan in augmented state space over beliefs

Each action now transitions to a new belief state

This defines an enormous MDP over belief states

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Histories and Belief States

ε

a1 a2

a1o1 a1o2 a2o1 a2o2

a1o1a1 a1o1a2

a1 a2

o1 o2 o1 o2

a1 a2

...

a1 a2

o1 o2 o1 o2

a1 a2

P(s)

P(s|a1) P(s|a2)

P(s|a1o1) P(s|a1o2) P(s|a2o1) P(s|a2o2)

History tree Belief tree

P(s|a1o1a1) P(s|a1o1a2)

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Belief State Planning

We can apply simulation-based search to the belief state MDP

Since these methods are effective in very large state spaces

Unfortunately updating belief states is slow

Belief state planners cannot scale up to realistic problems

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Root Sampling

Each simulation, pick one world from root beliefs: sample
state/transitions/reward function

Run simulation as if that world is real

Build plan in history space (fast!)

Evaluate histories V (h) e.g. by Monte-Carlo evaluation

Improve simulation policy e.g. by greedy action selection
at = argmax

a
V (hta)

Never updates beliefs during search

But still converges on the optimal search tree w.r.t. beliefs,
V (h)→ V ∗(h)

Intuitively, it averages over different worlds, tree provides filter

Reinforcement Learning and Simulation-Based Search

Planning Under Uncertainty

Demo

