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Initial Premises 
�  lack of deep theory to explain software 

engineering phenomena 
� machine learners widely deployed to 

solve software engineering problems 
�  focus on one class – fault prediction 
� many hundreds of fault prediction models 

published [5] 
 BUT 

� no one approach dominates 
� difficulties in comparing results 
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Further Premises 

�  compare models using prediction 
performance (statistic) 

�  view as a fitness function 
�  statistics measure different attributes / 

may sometimes be useful to apply multi-
objective fitness functions  

 BUT! 
� need to sort out flawed and misleading 

statistics 
7 

Dichotomous classifiers 

�  Simplest (and typical) case. 
� Recent systematic review located 208 

studies that satisfy inclusion criteria [5] 
�  Ignore costs of FP and FN (treat as 

equal). 

� Data sets are usually highly unbalanced 
i.e., +ve cases < 10%. 
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ML in SE Research Method 
1.  Invent/find new learner!

2.  Find data!

3.   REPEAT!

4.    Experimental procedure E yields numbers!

5.   IF numbers from new learner(classifier) > 
previous experiment THEN !

5.      happy !

6.     ELSE!

7.      E' <- permute(E)!

8.   UNTIL happy!

9.  publish!
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Confusion Matrix 
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interaction between Author Group and type of Classifier. This is interesting as
it points towards expertise being an important determinant of results (and 4x
more influential than the choice of classifier algorithm in its own right which is
scarcely significant and has a very small e↵ect). Finally, we should note that
there are extraneous factors as the linear model does not have a perfect fit and
the error term or residuals comprise in excess of 40% of the total variance.

Clearly the finding that researcher bias is so dominant is disturbing. The
primary studies have been carefully selected from good quality and rigorously
refereed outlets. All studies that satisfied the inclusion criteria of the initial
systematic review [9] and enable us to determine the confusion matrix were used.
We see three potential explanations of our findings of researcher bias. First,
many of the algorithms are subtle, complex to use and require many judgements
concerning e↵ective parameter settings. Research groups may have di↵ering
levels of access to expertise. Almost 20 years ago Michie et al. [18] remarked
on the problems of researchers having ‘pet’ algorithms in which they are expert
but less so in other methods. Second, there is the absence of reporting protocols
so that seemingly little details concerning say data preprocessing or parameter
settings may not be known. Thus seemingly similar studies may not be so. This
undermines the notions of replication and reproducibility increasingly discussed
by scientists e.g., [5, 7, 12]. Third, is researcher preference for some results
over others such as an anticipation that negative results may be more di�cult
to publish [4]. Scientists are subject to “extra-scientific processes” [20]. One
redress is to make blind analysis the norm.

So to summarise, computationally-intensive research is widespread. It needs
to be repeatable and reproducible if it is to have any credibility so the levels
of researcher bias we have discovered are extremely inimical to these goals.
Practical steps to reduce this level of bias are to (i) share expertise and conduct
more collaborative studies (ii) develop appropriate reporting protocols and (iii)
make blind analysis routine.

Methods

Here we describe the data collection and modelling method in more detail and
explore some of the threats.

The 601 experimental results we analysed were extracted from 42 studies.
These studies were initially included in a systematic review of 208 empirical
studies of software fault prediction [9]. This sub-set of 42 studies were those
which: first, satisfied a stringent set of quality criteria [9] (x from 208 studies);
second, used machine learning (y from x studies) and, third, we were able to
reconstruct the confusion matrix from the performance data reported (z from
y studies). See [2] for the reconstruction method we used. From this confu-
sion matrix data we calculated MCC for all 601 individual experimental results
reported in these 42 studies.

Assessing the performance of classifiers is a surprisingly subtle problem. The
fundamental unit of analysis is the confusion matrix which for binary classifica-
tion yields a 2⇥ 2 matrix where the columns represent the true classes and the
rows the predicted classes:


TP FP
FN TN

�

4�  TP = true positives (e.g. correctly predicted as 
defective components) 

�  FN = false negatives (e.g. wrongly predicted as 
defect-free) 

�  TP, … are instance counts 
�  n = TP+FP+TN+FN 
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Accuracy 

 
� Never use this! 
� Trivial classifiers can achieve very high 

'performance' based on the modal class, 
typically the negative case. 

11 

Precision, Recall and the F-measure 

�  From IR community 
� Widely used 
� Biased because they don't correctly 

handle negative cases. 

12 
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Precision (Specificity) 

 
� Proportion of predicted positive instances 

that are correct i.e., True Positive 
Accuracy  

� Undefined if TP+FP is zero (no +ves 
predicted, possible for n-fold CV with low 
prevalence) 

13 

Recall (Sensitivity) 

 
� Proportion of Positive instances correctly 

predicted. 
�  Important for many applications e.g. 

clinical diagnosis, defects, etc. 
� Undefined if TP+FN is zero (ie only -ves 

correctly predicted). 

14 
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F-measure 

 
�  Harmonic mean of Recall (R) and Precision (P). 
�  Two measures and their combination focus only 

on positive examples /predictions. 
�  Ignores TN hence how well classifier handles 

negative cases.  

15 

interaction between Author Group and type of Classifier. This is interesting as
it points towards expertise being an important determinant of results (and 4x
more influential than the choice of classifier algorithm in its own right which is
scarcely significant and has a very small e↵ect). Finally, we should note that
there are extraneous factors as the linear model does not have a perfect fit and
the error term or residuals comprise in excess of 40% of the total variance.

Clearly the finding that researcher bias is so dominant is disturbing. The
primary studies have been carefully selected from good quality and rigorously
refereed outlets. All studies that satisfied the inclusion criteria of the initial
systematic review [9] and enable us to determine the confusion matrix were used.
We see three potential explanations of our findings of researcher bias. First,
many of the algorithms are subtle, complex to use and require many judgements
concerning e↵ective parameter settings. Research groups may have di↵ering
levels of access to expertise. Almost 20 years ago Michie et al. [18] remarked
on the problems of researchers having ‘pet’ algorithms in which they are expert
but less so in other methods. Second, there is the absence of reporting protocols
so that seemingly little details concerning say data preprocessing or parameter
settings may not be known. Thus seemingly similar studies may not be so. This
undermines the notions of replication and reproducibility increasingly discussed
by scientists e.g., [5, 7, 12]. Third, is researcher preference for some results
over others such as an anticipation that negative results may be more di�cult
to publish [4]. Scientists are subject to “extra-scientific processes” [20]. One
redress is to make blind analysis the norm.

So to summarise, computationally-intensive research is widespread. It needs
to be repeatable and reproducible if it is to have any credibility so the levels
of researcher bias we have discovered are extremely inimical to these goals.
Practical steps to reduce this level of bias are to (i) share expertise and conduct
more collaborative studies (ii) develop appropriate reporting protocols and (iii)
make blind analysis routine.

Methods

Here we describe the data collection and modelling method in more detail and
explore some of the threats.

The 601 experimental results we analysed were extracted from 42 studies.
These studies were initially included in a systematic review of 208 empirical
studies of software fault prediction [9]. This sub-set of 42 studies were those
which: first, satisfied a stringent set of quality criteria [9] (x from 208 studies);
second, used machine learning (y from x studies) and, third, we were able to
reconstruct the confusion matrix from the performance data reported (z from
y studies). See [2] for the reconstruction method we used. From this confu-
sion matrix data we calculated MCC for all 601 individual experimental results
reported in these 42 studies.

Assessing the performance of classifiers is a surprisingly subtle problem. The
fundamental unit of analysis is the confusion matrix which for binary classifica-
tion yields a 2⇥ 2 matrix where the columns represent the true classes and the
rows the predicted classes:


TP FP
FN TN

�

4

Recall 

Precision 

Different F-measures  

�  Forman and Scholz (2010) 
� Average before or merge? 
� Undefined cases for Precision / Recall 
� Using highly skewed dataset from UCI 

obtain F=0.69 or 0.73 depending on 
method. 

�  Simulation shows significant bias, 
especially in the face of low prevalence or 
poor predictive performance. 

16 
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TABLE IV
COMPOSITE PERFORMANCE MEASURES

Construct Defined as Description
Recall
pd (probability of detection)
Sensitivity
True positive rate

TP/(TP + FN) Proportion of faulty units correctly classified

Precision TP/(TP + FP )
Proportion of units correctly predicted as
faulty

pf (probability of false alarm)
False positive rate FP/(FP + TN)

Proportion of non-faulty units incorrectly
classified

Specificity
True negative rate TN/(TN + FP )

Proportion of correctly classified non faulty
units

F-measure 2·Recall·Precision

Recall+Precision

Most commonly defined as the harmonic
mean of precision and recall

Accuracy (TN+TP )
(TN+FN+FP+TP )

Proportion of correctly classified units

Matthews Correlation Coefficient TP⇥TN�FP⇥FNp
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Combines all quadrants of the binary confu-
sion matrix to produce a value in the range -1
to +1 with 0 indicating random correlation be-
tween the prediction and the recorded results.
MCC can be tested for statistical significance,
with �2 = N ·MCC2 where N is the total
number of instances.

1) Classifier family: We decided to group specific predic-
tion techniques into a total of seven families which were
derived through a bottom-up analysis of each primary study.
The categories are given in Figure 3. This avoided the problem
of every classifier being unique due to subtle variations in
parameter settings, etc.

2) Data set family: Again these were grouped by base data
set so differing versions were not regarded as entirely new data
sets. Apart from not having an excessive number of classes
this also overcame the problem of two versions of a data
set seeming to be the same but in reality differing due to
the injection of errors or differing (and often unreported) pre-
processing strategies. See Gray et al. [12] for a more detailed
discussion with respect to the NASA data sets. [12].

3) Metric family: Here we consider the hypothesis that
there is a relationship between the type of metric used as input
for a classifier and its performance. Again we group specific
metrics into families so for example, we can explore the impact
of using change or static metrics. We use the classification
proposed by Arisholm et al. [1], namely Delta (i.e. change
metrics), Process metrics e.g. effort and authorship and Static
metrics (i.e. derived from static analysis of the source code
e.g. the Chidamber and Kemerer metrics suite [7]) and then
an Other category. Combinations of these categories are also
permitted. Again our philosophy is to consider whether gross
differences are important rather than to compare detailed
differences in how a specific metric is formulated.

4) Author group: The Author groups were produced by
linking joint authors of a paper to form clusters of authors,
which are joined together when an author is found on more
than one paper. This produces the graph in Figure 1. Table V
details the groups, the individual paper authorships and unique
authors in bold.

Fig. 1. Author Collaborations

IV. RESULTS

We use R (open source statistical software) for our analyses.

A. Descriptive Analysis of the Empirical Studies

The variables collected are described in Table VI. They are
then summarised in Tables VII and VIII. We see that there
are a total of 7 ClassifierFamily categories and the relative
distributions are shown in Fig. 3. It is clear that Decision Trees,
Regression-based and Bayesian approaches predominate with
66, 62 and 41 observations respectively.

Second, we consider Dataset family. Here there are 18 dif-
ferent classes but Eclipse dominates with approximately 48%

Matthews (1975) and Baldi et al. (2000) 

� Uses entire matrix 
� easy to interpret (+1 = perfect predictor, 

0=random, -1 = perfectly perverse 
predictor) 

� Related to the chi square distribution 
 

Motivating Example (1) 

18 

Statistic Value 
n 220 
accuracy 0.50 
precision 0.09 
recall 0.50 
F-measure 0.15 
MCC 0 
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Motivating Example (2) 

19 

Statistic Value 
n 200 
accuracy 0.45 
precision 0.10 
recall 0.33 
F-measure 0.15 
MCC -0.14 

Matthews Correlation Coefficient 

Martin Shepperd 20 MetaAnalysis$MCC
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F-measure vs MCC 
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MCC Highlights Perverse 
Classifiers 
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� 26/600 (4.3%) of results are negative 
� 152 (25%) are < 0.1 

� 18 (3%) are > 0.7 
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Hall of Shame!! 
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� The lowest MCC value was actually -0.50 
� Paper reported: 

�  and concluded: 

Table 4: Normalized vs Raw code measures

Project
Correctness Specificity Sensitivity

RFC NRFC RFC NRFC RFC NRFC

ECS 80% 80% 50% 100% 100% 67%

CRS 71% 57% 100% 80% 0% 0%

BNS 67% 33% 100% 50% 0% 0%

MYL-P01 63% 75% 59% 74% 80% 80%

MYL-P02 63% 75% 44% 81% 100% 63%

MYL-P03 72% 72% 78% 78% 43% 43%

MYL-P04 51% 67% 52% 75% 40% 0%

MYL-P05 48% 61% 52% 67% 0% 0%

MYL-P06 61% 85% 56% 83% 10% 100%

MYL-P07 62% 80% 59% 77% 77% 92%

MYL-P08 60% 80% 50% 88% 100% 50%

MYL-P09 75% 81% 74% 84% 83% 63%

MYL-P10 76% 90% 76% 94% 75% 75%

MYL-P11 74% 79% 72% 79% 100% 100%

MYL-P12 87.5% 87.5% 91.7% 91.7% 75% 75%

MYL-P13 56% 88% 50% 86% 100% 100%

Table 5: Normalized code vs UML measures

Model Project
Correctness Specificity Sensitivity

Code UML Code UML Code UML

NRFC

ECS 80% 80% 100% 100% 67% 67%

CRS 57% 64% 80% 80% 0% 25%

BNS 33% 67% 50% 75% 0% 50%

and Sensitivity (% of MF classes correctly classified).
Effect of Normalization on code measures
In Table 4, we are comparing the results of the 16 projects

and packages using only code measures, we can say that the
normalization procedure improved most of the results of the
RFC model, up to 32%, 50% and 15% more in Correctness,
Specificity, and Sensitivity, respectively.

Effect of Normalization on UML measures
Normalized UML measures did better than raw UML mea-

sures, considering that none of the raw UML measures could
detect MF classes, except for the UML measures of the ECS.

UML measures VS Code measures
In Table 5, the percentages of Correctness, Specificity and

Sensitivity obtained by the normalized code and UML met-
rics are shown. In general, the normalized UML RFC mea-
sures obtained equal, and in some cases better results, than
the normalized code RFC measures.

6. CONCLUSION AND FUTUREWORK
The results found in this study lead us to conclude that the

proposed UML RFC metric can predict faulty code as well
as the code RFC metric does. The elimination of outliers
and the normalization procedure used in this study were of
great utility, not just for enabling our UML metric to pre-
dict fault-proneness of code, using a code-based prediction
model, but also for improving the prediction results across
different packages and projects, using the same model. De-
spite our encouraging findings, external validity has not been
fully proved yet, and further empirical studies are needed,
especially with real data from the industry.

In hopes to improve our results, we expect to work in the
future with a purely UML-based prediction model and to
include other early metrics (obtainable before the implanta-

tion phase). If we can finally provide a more successful pre-
diction model, able to identify certainly which parts of the
design are prone to produce faulty code, project managers
can consider re-design, assign highly-competent developers
to implement cautiously those low-quality elements, or sim-
ply to monitor them closely. Thus, we would be preventing
faults and saving time and human resources.
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�  A paper in TSE (65 citations) has MCC= -0.47 , 
-0.31 

�  Paper reported: 

�  and concluded: 

Table 6 shows the model parameters, Table 7 shows the
confusion matrices obtained from applying the two regres-
sion models, and Table 8 shows the results of evaluating
model specificity, sensitivity, precision, and the correspond-
ing rates for false positives and false negatives. From
Table 6, we find that !2 has a lower DIC than !1. Also from
Tables 7 and 8, !2 is more sensitive to finding fault prone
modules, achieves greater precision while having smaller
rates of false positive and false negative classification.

Thus, the functional form of the CPD for the fault
proneness node in our BN model uses !2 as the linear
predictor. Fig. 6 shows the BN model for fault proneness
analysis using this chosen functional form. The estimation
of the model is the marginal probability of observing a fault
over all the modules. Essentially, this means that we should
expect a 37.2 percent chance of finding at least one fault in a
class picked at random from the KC1 software system.

4.3 Discussion of Results

One of the goals of this paper is to experimentally evaluate
how Bayesian methods can be used for assessing software
fault content and fault proneness.

Given the results of performing multiple regression, we
find that the metrics WMC, CBO, RFC, and SLOC are very
significant for assessing both fault content and fault
proneness. Gyimóthy et al. [23] have found that this specific
set of predictors is very significant for assessing fault
content and fault proneness in large open source software
systems. Additionally, their study also finds LCOM and
DIT to be very significant for linear regression and NOC to
be the most insignificant for both analyses. Our results
indicate that neither DIT nor NOC are significant, but
LCOM seems to be useful when performing Poisson
regression; however, the linear model not containing LCOM
was better than the Poisson model containing it. Therefore,
depending on the underlying model used to relate the
metrics to fault content, LCOM is significant.

We did not have data related to the change in metrics for
subsequent releases of the KC1 system. Consequently, we
performed 10-fold cross validation to build a BN model that
estimates fault content at a statistically significant level. We
also used the K-S test to confirm the hypothesis that the
estimated distribution of fault content per module is not
significantly different from the data. Given these findings,
we believe that, once a BN model containing WMC, CBO,
RFC, and SLOC measures is built on a given release of a
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Fig. 5. Defect content estimation from the BN model.

TABLE 6
Multiple Regression Models (Logistic)

TABLE 7
Confusion MatricesEmpirical Analysis of Software Fault Content
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constructing a causal framework that can include process, product, and other diverse sources of information regarding fault introduction

during the software development process. In this paper, we discuss the aspect of relating internal product metrics to external quality
metrics. Specifically, we build a Bayesian network (BN) model to relate object-oriented software metrics to software fault content and fault

proneness. Assuming that the relationship can be described as a generalized linear model, we derive parametric functional forms for the
target node conditional distributions in the BN. These functional forms are shown to be able to represent linear, Poisson, and binomial
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that our approach produces statistically significant estimations and that our overall modeling method performs no worse than existing
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1 INTRODUCTION

THE notion of a good quality software product, from the
developer’s viewpoint, is usually associated with the

external quality metrics of 1) fault (or defect) content, i.e., the
number of errors in a software artifact, 2) fault density, i.e.,
fault content per thousand lines of code, or 3) fault proneness,
i.e., the probability that an artifact contains a fault. To guide
the software verification and testing effort, several measures
of software structural quality have been developed, e.g., the
Chidamber-Kemerer (C-K) suite of metrics [1], [2]. These
internal product metrics have been used in numerous models
which relate them to the external quality metrics [3], [4], [5],
[6], [7], [8], [9]. Owing to the belief that a high quality software
process will produce a high quality software product [10],
there are also some models in the literature which relate
certain process measures to fault content [11], [12], [13]. The
main idea in many of these existing approaches is to build a
statistical model that relates the product or process metrics to
the quality metrics.

Although one intuitively expects a high quality software
development process to yield a high quality product, there is
very little empirical evidence to support this belief. There is
also sufficient variation in the development process so that
faults enter the software from diverse sources. Many of these
sources do not yet have established measures to support their
inclusion in existing models for quality assessment, so they

are subjectively qualified, e.g., conformance of the executed
process to a process specification, quality of the development
team, quality of the verification process. Consequently, the
existing software quality assessment methods are insufficient
for including such sources. Furthermore, there does not yet
seem to be a standardized set of process measures that have
been empirically validated as significant for software quality
assessment. Besides these issues, Fenton et al. have identified
various shortcomings with existing approaches and indi-
cated the need for a causal model for quality assessment [14],
[15], [16], [17].

Thus, there is a need for both 1) empirically validating
the relationship of process measures with external quality
metrics and 2) building a repertoire of statistical models
which can incorporate existing product and process metrics,
as well as other sources of evidence that may have been
subjectively qualified.

Now, we briefly provide the context which motivates the
work described in this paper. One of the broad goals of this
work is to build a framework for quality assessment where we
use not only the available process and product measure-
ments, but also the evidence available from the diverse
sources influencing fault introduction. Elsewhere [18], we
have developed such a framework using Bayesian networks
(BN) [19], as shown in Fig. 1. In short, our idea is to

1. separately consider product measurements as one set
of factors that influence software quality,

2. separately consider the available process measure-
ments and subjectively qualifiable process properties
as another set of factors influencing quality,

3. redefine quality as the likelihood of observing proper-
ties of the software product, e.g., fault content, fault
proneness, reliability, and

4. build a model capable of relating all the input
variables to software quality.
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Misleading performance statistics 
C. Catal, B. Diri, and B. Ozumut. (2007) in their 
defect prediction study give precision, recall and 
accuracy (0.682, 0.621, 0.641). 
 
From this Bowes et al. compute an F-measure of 
0.6501 [0,1] 
 
But MCC is 0.2845 [-1,+1] 
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Area Under the Curve 
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Issues with AUC 

28 

� Reduce tradeoffs between TPR and FPR 
to a single number 

�  Straightforward where curve A strictly 
dominates B -> AUCA > AUCB 

� Otherwise problematic when real world 
costs unknown 



Mar$n	
  Shepperd,	
  Brunel	
  University	
   15	
  

Further Issues with AUC 

29 

� Cannot be computed when no +ve case 
in a fold. 

� Two different ways to compute with CV 
(Forman and Scholz, 2010). 
◦ WEKA v 3.6.1 uses the AUCmerge strategy in 

its Explorer GUI and Evaluation core class for 
CV, but AUCavg in the Experimenter interface.  

So where do we go from here? 

� Determine what effects we (better the 
target users) are concerned with? 
Multiple effects? 

�  Informs fitness function 
�  Focus on effect sizes (and large effects) 
�  Focus on effects relative to random 
� Better reporting 

30 
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