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Initial Premises

* lack of deep theory to explain software
engineering phenomena

* machine learners widely deployed to
solve software engineering problems

» focus on one class — fault prediction
* many hundreds of fault prediction models
published [5]
BUT
* no one approach dominates
« difficulties in comparing results
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Further Premises

e compare models using prediction
performance (statistic)

e view as a fitness function

* statistics measure different attributes /
may sometimes be useful to apply multi-
objective fitness functions

BUT!

* need to sort out flawed and misleading
statistics

Dichotomous classifiers

e Simplest (and typical) case.

* Recent systematic review located 208
studies that satisfy inclusion criteria [5]

* Ignore costs of FP and FN (treat as
equal).

* Data sets are usually highly unbalanced
i.e., +ve cases < 10%.
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ML in SE Research Method

1. Invent/find new learner
2. Find data

3. REPEAT

4. Experimental procedure E yields numbers

5. IF numbers from new learner(classifier) >
previous experiment THEN

5. happy

6. ELSE

7. E' <- permute(E)

8. UNTIL happy

9. publish

Confusion Matrix

TP FP
FN TN

e TP = true positives (e.g. correctly predicted as
defective components)

* FN = false negatives (e.g. wrongly predicted as
defect-free)

e TP, ... are instance counts
e n = TP+FP+TN+FN
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Accuracy

TP+TN
n

¢ Never use this!

» Trivial classifiers can achieve very high
'performance’ based on the modal class,
typically the negative case.

Precision, Recall and the F-measure

* From IR community
* Widely used

* Biased because they don't correctly
handle negative cases.
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Precision (Specificity)

TP
TP+ FP
* Proportion of predicted positive instances

that are correct i.e., True Positive
Accuracy

* Undefined if TP+FP is zero (no +ves
predicted, possible for n-fold CV with low
prevalence)

Recall (Sensitivity)

TP
TP+ FN

* Proportion of Positive instances correctly
predicted.

 Important for many applications e.g.
clinical diagnosis, defects, etc.

* Undefined if TP+FN is zero (ie only -ves
correctly predicted).
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F-measure
2xX Rx P
R+ P

» Harmonic mean of Recall (R) and Precision (P).

e Two measures and their combination focus only
on positive examples /predictions.

¢ Ignores TN hence how well classifier handles
negative cases. —

( FP -l Precision
[[FN|TN |

Recall

Different F-measures

* Forman and Scholz (2010)
* Average before or merge!?
» Undefined cases for Precision / Recall

» Using highly skewed dataset from UCI
obtain F=0.69 or 0.73 depending on
method.

* Simulation shows significant bias,
especially in the face of low prevalence or
poor predictive performance.
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Matthews Correlation Coefficient

TPXTN—FPXFN
V(TP+FP)(TP+FN)(TN+FP)(TN+FN)

e Uses entire matrix

* easy to interpret (+1| = perfect predictor,
O=random, -| = perfectly perverse
predictor)

* Related to the chi square distribution

Matthews (1975) and Baldi et al. (2000)

Motivating Example (1)

[10 100]

10° 100 | Statistic | Value
n 220
accuracy 0.50
precision 0.09
recall 0.50
F-measure 0.15
MCC ]
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Motivating Example (2)

accuracy
precision
recall
F-measure
MCC

10 90
[20 80]
n 200

0.45
0.10
0.33
0.15

[ ]
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MetaAnalysis$MCC

Matthews Correlation Coefficient
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F-measure vs MCC

1.0

08

0.6

04

0.2

0.0

-0.5 0.0 0.5 1.0

MCC Highlights Perverse
Classifiers

» 26/600 (4.3%) of results are negative
* 152 (25%) are < 0.1

* 18 (3%) are > 0.7
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Hall of Shame!!

a.k.a.accuracy

* The lowest ually -0.50

* Paper report
Table 5: Normaélized c measure

SergTivity

Code | UML | Code | UML | Code | UML
ECS 80% | 80% 100% | 100% | 67% | 67%
~erc | CRS | 57% | 64% | 80% 80% 0% 25%
BNS 33% | 67% | 50% 5% 0% 50%

Correctness Specificity

Model | Proj

e and concluded:
De-

spite our encouraging findings, external validity has not been
fully proved yet, and further empirical studies are needed,
especially with real data from the industry.

Hall of Shame (continued)

* A paper in TSE (65 citations) has MCC= -0.47,
-0.31

* Paper reported:

Classified as
Ui 72
Observed as | NFP  FP [ NFP  FP | Total
FP 68 20 75 13 88
NFP 27 30 23 34 57
Total 95 50 98 47 145

¢ and concluded:

The results show
ions and that our overall modeling method performs no worse than existing

that our approach p isti significant
techniques.
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Misleading performance statistics

C. Catal, B. Diri, and B. Ozumut. (2007) in their
defect prediction study give precision, recall and
accuracy (0.682,0.621,0.641).

From this Bowes et al. compute an F-measure of
0.6501 [0,I]

But MCC is 0.2845 [-1,+1]

0, is optimal All +ves

e
o -
o ‘good’
o -
=
.‘%’
g =
g e chance
N

S 4

o perverse

e T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
N 1,0 is worst case
False positive rate
All -ves
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Area Under the Curve
%— g — Area under
) the curve
S (AUC)
g s T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
Issues with AUC

e Reduce tradeoffs between TPR and FPR

single number

ghtforward where curve A strictly
inates B -> AUC, > AUC,

» Otherwise problematic when real world
costs unknown
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Further Issues with AUC

» Cannot be computed when no +ve case
in a fold.

 Two different ways to compute with CV
(Forman and Scholz, 2010).

> WEKA v 3.6.1 uses the AUC strategy in

merge

its Explorer GUI and Evaluation core class for
CV,but AUC,, in the Experimenter interface.

So where do we go from here!?

* Determine what effects we (better the
target users) are concerned with?
Multiple effects?

¢ Informs fitness function

* Focus on effect sizes (and large effects)
* Focus on effects relative to random

* Better reporting
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