
Mar$n	
 Shepperd,	
 Brunel	
 University	
 1	

Assessing the predictive
performance of
machine learners in software defect
prediction

Martin Shepperd
Brunel University

martin.shepperd@brunel.ac.uk

1

Understanding your fitness
function!

Martin Shepperd
Brunel University

martin.shepperd@brunel.ac.uk

2

Mar$n	
 Shepperd,	
 Brunel	
 University	
 2	

That ole devil called accuracy
(predictive performance)

Martin Shepperd
Brunel University

martin.shepperd@brunel.ac.uk

3

Acknowledgements

� Tracy Hall (Brunel)

� David Bowes (Uni of Hertfordshire)

4

Mar$n	
 Shepperd,	
 Brunel	
 University	
 3	

Bowes, Hall and Gray (2012)

5

D. Bowes, T. Hall, and D. Gray,
"Comparing the performance of
fault prediction models which
report multiple performance
measures: recomputing the
confusion matrix," presented at
PROMISE '12, Sweden, 2012.

Initial Premises
�  lack of deep theory to explain software

engineering phenomena
� machine learners widely deployed to

solve software engineering problems
�  focus on one class – fault prediction
� many hundreds of fault prediction models

published [5]
 BUT

� no one approach dominates
� difficulties in comparing results

6

Mar$n	
 Shepperd,	
 Brunel	
 University	
 4	

Further Premises

�  compare models using prediction
performance (statistic)

�  view as a fitness function
�  statistics measure different attributes /

may sometimes be useful to apply multi-
objective fitness functions

 BUT!
� need to sort out flawed and misleading

statistics
7

Dichotomous classifiers

�  Simplest (and typical) case.
� Recent systematic review located 208

studies that satisfy inclusion criteria [5]
�  Ignore costs of FP and FN (treat as

equal).

� Data sets are usually highly unbalanced
i.e., +ve cases < 10%.

8

Mar$n	
 Shepperd,	
 Brunel	
 University	
 5	

ML in SE Research Method
1.  Invent/find new learner!

2.  Find data!

3.   REPEAT!

4.  Experimental procedure E yields numbers!

5.   IF numbers from new learner(classifier) >
previous experiment THEN !

5.  happy !

6.   ELSE!

7.  E' <- permute(E)!

8.   UNTIL happy!

9.  publish!

9

Confusion Matrix

Martin Shepperd 10

interaction between Author Group and type of Classifier. This is interesting as
it points towards expertise being an important determinant of results (and 4x
more influential than the choice of classifier algorithm in its own right which is
scarcely significant and has a very small e↵ect). Finally, we should note that
there are extraneous factors as the linear model does not have a perfect fit and
the error term or residuals comprise in excess of 40% of the total variance.

Clearly the finding that researcher bias is so dominant is disturbing. The
primary studies have been carefully selected from good quality and rigorously
refereed outlets. All studies that satisfied the inclusion criteria of the initial
systematic review [9] and enable us to determine the confusion matrix were used.
We see three potential explanations of our findings of researcher bias. First,
many of the algorithms are subtle, complex to use and require many judgements
concerning e↵ective parameter settings. Research groups may have di↵ering
levels of access to expertise. Almost 20 years ago Michie et al. [18] remarked
on the problems of researchers having ‘pet’ algorithms in which they are expert
but less so in other methods. Second, there is the absence of reporting protocols
so that seemingly little details concerning say data preprocessing or parameter
settings may not be known. Thus seemingly similar studies may not be so. This
undermines the notions of replication and reproducibility increasingly discussed
by scientists e.g., [5, 7, 12]. Third, is researcher preference for some results
over others such as an anticipation that negative results may be more di�cult
to publish [4]. Scientists are subject to “extra-scientific processes” [20]. One
redress is to make blind analysis the norm.

So to summarise, computationally-intensive research is widespread. It needs
to be repeatable and reproducible if it is to have any credibility so the levels
of researcher bias we have discovered are extremely inimical to these goals.
Practical steps to reduce this level of bias are to (i) share expertise and conduct
more collaborative studies (ii) develop appropriate reporting protocols and (iii)
make blind analysis routine.

Methods

Here we describe the data collection and modelling method in more detail and
explore some of the threats.

The 601 experimental results we analysed were extracted from 42 studies.
These studies were initially included in a systematic review of 208 empirical
studies of software fault prediction [9]. This sub-set of 42 studies were those
which: first, satisfied a stringent set of quality criteria [9] (x from 208 studies);
second, used machine learning (y from x studies) and, third, we were able to
reconstruct the confusion matrix from the performance data reported (z from
y studies). See [2] for the reconstruction method we used. From this confu-
sion matrix data we calculated MCC for all 601 individual experimental results
reported in these 42 studies.

Assessing the performance of classifiers is a surprisingly subtle problem. The
fundamental unit of analysis is the confusion matrix which for binary classifica-
tion yields a 2⇥ 2 matrix where the columns represent the true classes and the
rows the predicted classes:


TP FP
FN TN

�

4�  TP = true positives (e.g. correctly predicted as
defective components)

�  FN = false negatives (e.g. wrongly predicted as
defect-free)

�  TP, … are instance counts
�  n = TP+FP+TN+FN

Mar$n	
 Shepperd,	
 Brunel	
 University	
 6	

Accuracy

� Never use this!
� Trivial classifiers can achieve very high

'performance' based on the modal class,
typically the negative case.

11

Precision, Recall and the F-measure

�  From IR community
� Widely used
� Biased because they don't correctly

handle negative cases.

12

Mar$n	
 Shepperd,	
 Brunel	
 University	
 7	

Precision (Specificity)

� Proportion of predicted positive instances

that are correct i.e., True Positive
Accuracy

� Undefined if TP+FP is zero (no +ves
predicted, possible for n-fold CV with low
prevalence)

13

Recall (Sensitivity)

� Proportion of Positive instances correctly

predicted.
�  Important for many applications e.g.

clinical diagnosis, defects, etc.
� Undefined if TP+FN is zero (ie only -ves

correctly predicted).

14

Mar$n	
 Shepperd,	
 Brunel	
 University	
 8	

F-measure

�  Harmonic mean of Recall (R) and Precision (P).
�  Two measures and their combination focus only

on positive examples /predictions.
�  Ignores TN hence how well classifier handles

negative cases.

15

interaction between Author Group and type of Classifier. This is interesting as
it points towards expertise being an important determinant of results (and 4x
more influential than the choice of classifier algorithm in its own right which is
scarcely significant and has a very small e↵ect). Finally, we should note that
there are extraneous factors as the linear model does not have a perfect fit and
the error term or residuals comprise in excess of 40% of the total variance.

Clearly the finding that researcher bias is so dominant is disturbing. The
primary studies have been carefully selected from good quality and rigorously
refereed outlets. All studies that satisfied the inclusion criteria of the initial
systematic review [9] and enable us to determine the confusion matrix were used.
We see three potential explanations of our findings of researcher bias. First,
many of the algorithms are subtle, complex to use and require many judgements
concerning e↵ective parameter settings. Research groups may have di↵ering
levels of access to expertise. Almost 20 years ago Michie et al. [18] remarked
on the problems of researchers having ‘pet’ algorithms in which they are expert
but less so in other methods. Second, there is the absence of reporting protocols
so that seemingly little details concerning say data preprocessing or parameter
settings may not be known. Thus seemingly similar studies may not be so. This
undermines the notions of replication and reproducibility increasingly discussed
by scientists e.g., [5, 7, 12]. Third, is researcher preference for some results
over others such as an anticipation that negative results may be more di�cult
to publish [4]. Scientists are subject to “extra-scientific processes” [20]. One
redress is to make blind analysis the norm.

So to summarise, computationally-intensive research is widespread. It needs
to be repeatable and reproducible if it is to have any credibility so the levels
of researcher bias we have discovered are extremely inimical to these goals.
Practical steps to reduce this level of bias are to (i) share expertise and conduct
more collaborative studies (ii) develop appropriate reporting protocols and (iii)
make blind analysis routine.

Methods

Here we describe the data collection and modelling method in more detail and
explore some of the threats.

The 601 experimental results we analysed were extracted from 42 studies.
These studies were initially included in a systematic review of 208 empirical
studies of software fault prediction [9]. This sub-set of 42 studies were those
which: first, satisfied a stringent set of quality criteria [9] (x from 208 studies);
second, used machine learning (y from x studies) and, third, we were able to
reconstruct the confusion matrix from the performance data reported (z from
y studies). See [2] for the reconstruction method we used. From this confu-
sion matrix data we calculated MCC for all 601 individual experimental results
reported in these 42 studies.

Assessing the performance of classifiers is a surprisingly subtle problem. The
fundamental unit of analysis is the confusion matrix which for binary classifica-
tion yields a 2⇥ 2 matrix where the columns represent the true classes and the
rows the predicted classes:


TP FP
FN TN

�

4

Recall

Precision

Different F-measures

�  Forman and Scholz (2010)
� Average before or merge?
� Undefined cases for Precision / Recall
� Using highly skewed dataset from UCI

obtain F=0.69 or 0.73 depending on
method.

�  Simulation shows significant bias,
especially in the face of low prevalence or
poor predictive performance.

16

Mar$n	
 Shepperd,	
 Brunel	
 University	
 9	

Matthews Correlation Coefficient

Martin Shepperd 17

TABLE IV
COMPOSITE PERFORMANCE MEASURES

Construct Defined as Description
Recall
pd (probability of detection)
Sensitivity
True positive rate

TP/(TP + FN) Proportion of faulty units correctly classified

Precision TP/(TP + FP)
Proportion of units correctly predicted as
faulty

pf (probability of false alarm)
False positive rate FP/(FP + TN)

Proportion of non-faulty units incorrectly
classified

Specificity
True negative rate TN/(TN + FP)

Proportion of correctly classified non faulty
units

F-measure 2·Recall·Precision

Recall+Precision

Most commonly defined as the harmonic
mean of precision and recall

Accuracy (TN+TP)
(TN+FN+FP+TP)

Proportion of correctly classified units

Matthews Correlation Coefficient TP⇥TN�FP⇥FNp
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Combines all quadrants of the binary confu-
sion matrix to produce a value in the range -1
to +1 with 0 indicating random correlation be-
tween the prediction and the recorded results.
MCC can be tested for statistical significance,
with �2 = N ·MCC2 where N is the total
number of instances.

1) Classifier family: We decided to group specific predic-
tion techniques into a total of seven families which were
derived through a bottom-up analysis of each primary study.
The categories are given in Figure 3. This avoided the problem
of every classifier being unique due to subtle variations in
parameter settings, etc.

2) Data set family: Again these were grouped by base data
set so differing versions were not regarded as entirely new data
sets. Apart from not having an excessive number of classes
this also overcame the problem of two versions of a data
set seeming to be the same but in reality differing due to
the injection of errors or differing (and often unreported) pre-
processing strategies. See Gray et al. [12] for a more detailed
discussion with respect to the NASA data sets. [12].

3) Metric family: Here we consider the hypothesis that
there is a relationship between the type of metric used as input
for a classifier and its performance. Again we group specific
metrics into families so for example, we can explore the impact
of using change or static metrics. We use the classification
proposed by Arisholm et al. [1], namely Delta (i.e. change
metrics), Process metrics e.g. effort and authorship and Static
metrics (i.e. derived from static analysis of the source code
e.g. the Chidamber and Kemerer metrics suite [7]) and then
an Other category. Combinations of these categories are also
permitted. Again our philosophy is to consider whether gross
differences are important rather than to compare detailed
differences in how a specific metric is formulated.

4) Author group: The Author groups were produced by
linking joint authors of a paper to form clusters of authors,
which are joined together when an author is found on more
than one paper. This produces the graph in Figure 1. Table V
details the groups, the individual paper authorships and unique
authors in bold.

Fig. 1. Author Collaborations

IV. RESULTS

We use R (open source statistical software) for our analyses.

A. Descriptive Analysis of the Empirical Studies

The variables collected are described in Table VI. They are
then summarised in Tables VII and VIII. We see that there
are a total of 7 ClassifierFamily categories and the relative
distributions are shown in Fig. 3. It is clear that Decision Trees,
Regression-based and Bayesian approaches predominate with
66, 62 and 41 observations respectively.

Second, we consider Dataset family. Here there are 18 dif-
ferent classes but Eclipse dominates with approximately 48%

Matthews (1975) and Baldi et al. (2000)

� Uses entire matrix
� easy to interpret (+1 = perfect predictor,

0=random, -1 = perfectly perverse
predictor)

� Related to the chi square distribution

Motivating Example (1)

18

Statistic Value
n 220
accuracy 0.50
precision 0.09
recall 0.50
F-measure 0.15
MCC 0

Mar$n	
 Shepperd,	
 Brunel	
 University	
 10	

Motivating Example (2)

19

Statistic Value
n 200
accuracy 0.45
precision 0.10
recall 0.33
F-measure 0.15
MCC -0.14

Matthews Correlation Coefficient

Martin Shepperd 20 MetaAnalysis$MCC

fre
qu
en
cy

-0.5 0.0 0.5 1.0

0
20

40
60

80
10
0

12
0

14
0

Mar$n	
 Shepperd,	
 Brunel	
 University	
 11	

F-measure vs MCC

21

-0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCC

f

MCC Highlights Perverse
Classifiers

Martin Shepperd 22

� 26/600 (4.3%) of results are negative
� 152 (25%) are < 0.1

� 18 (3%) are > 0.7

Mar$n	
 Shepperd,	
 Brunel	
 University	
 12	

Hall of Shame!!

Martin Shepperd 23

� The lowest MCC value was actually -0.50
� Paper reported:

�  and concluded:

Table 4: Normalized vs Raw code measures

Project
Correctness Specificity Sensitivity

RFC NRFC RFC NRFC RFC NRFC

ECS 80% 80% 50% 100% 100% 67%

CRS 71% 57% 100% 80% 0% 0%

BNS 67% 33% 100% 50% 0% 0%

MYL-P01 63% 75% 59% 74% 80% 80%

MYL-P02 63% 75% 44% 81% 100% 63%

MYL-P03 72% 72% 78% 78% 43% 43%

MYL-P04 51% 67% 52% 75% 40% 0%

MYL-P05 48% 61% 52% 67% 0% 0%

MYL-P06 61% 85% 56% 83% 10% 100%

MYL-P07 62% 80% 59% 77% 77% 92%

MYL-P08 60% 80% 50% 88% 100% 50%

MYL-P09 75% 81% 74% 84% 83% 63%

MYL-P10 76% 90% 76% 94% 75% 75%

MYL-P11 74% 79% 72% 79% 100% 100%

MYL-P12 87.5% 87.5% 91.7% 91.7% 75% 75%

MYL-P13 56% 88% 50% 86% 100% 100%

Table 5: Normalized code vs UML measures

Model Project
Correctness Specificity Sensitivity

Code UML Code UML Code UML

NRFC

ECS 80% 80% 100% 100% 67% 67%

CRS 57% 64% 80% 80% 0% 25%

BNS 33% 67% 50% 75% 0% 50%

and Sensitivity (% of MF classes correctly classified).
Effect of Normalization on code measures
In Table 4, we are comparing the results of the 16 projects

and packages using only code measures, we can say that the
normalization procedure improved most of the results of the
RFC model, up to 32%, 50% and 15% more in Correctness,
Specificity, and Sensitivity, respectively.

Effect of Normalization on UML measures
Normalized UML measures did better than raw UML mea-

sures, considering that none of the raw UML measures could
detect MF classes, except for the UML measures of the ECS.

UML measures VS Code measures
In Table 5, the percentages of Correctness, Specificity and

Sensitivity obtained by the normalized code and UML met-
rics are shown. In general, the normalized UML RFC mea-
sures obtained equal, and in some cases better results, than
the normalized code RFC measures.

6. CONCLUSION AND FUTUREWORK
The results found in this study lead us to conclude that the

proposed UML RFC metric can predict faulty code as well
as the code RFC metric does. The elimination of outliers
and the normalization procedure used in this study were of
great utility, not just for enabling our UML metric to pre-
dict fault-proneness of code, using a code-based prediction
model, but also for improving the prediction results across
different packages and projects, using the same model. De-
spite our encouraging findings, external validity has not been
fully proved yet, and further empirical studies are needed,
especially with real data from the industry.

In hopes to improve our results, we expect to work in the
future with a purely UML-based prediction model and to
include other early metrics (obtainable before the implanta-

tion phase). If we can finally provide a more successful pre-
diction model, able to identify certainly which parts of the
design are prone to produce faulty code, project managers
can consider re-design, assign highly-competent developers
to implement cautiously those low-quality elements, or sim-
ply to monitor them closely. Thus, we would be preventing
faults and saving time and human resources.

7. REFERENCES
[1] S. Aksoy and R. M. Haralick. Feature normalization

and likelihood-based similarity measures for image
retrieval. Pattern Recogn. Lett., 22(5):563–582, 2001.

[2] A. L. Baroni and F. B. Abreu. An ocl-based
formalization of the moose metric suite. In 7th Intnl.
ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, 2003.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE TSE, 22(10):751–761, 1996.

[4] V. Bewick, L. Cheek, and J. Ball. Statistics review 14:
Logistic regression. Critical Care, 9(1), 2005.

[5] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter.
Exploring the relationship between design measures
and software quality in object-oriented systems. J.
Syst. Softw., 51(3):245–273, 2000.

[6] A. E. Camargo Cruz and K. Ochimizu. Quality
prediction model for object oriented software using
uml metrics. In Proc. of the 4th World Congress for
Software Quality, Bethesda, Maryland, USA, 2008.
American Society for Quality.

[7] A. E. Camargo Cruz and K. Ochimizu. Towards
logistic regression models for predicting fault-prone
code across software projects. In ESEM ’09: 3rd
International Symposium on Empirical Software
Engineering and Measurement, pages 460–463,
Washington, DC, USA, 2009. IEEE Computer Society.

[8] G. Hassan. Designing Concurrent, Distributed, and
Real-Time Applications with UML. Addison
Wesley-Object Technology Series Editors, Boston,
MA, USA, 2000.

[9] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan,
and P. Thambidurai. Object oriented software quality
prediction using general regression neural networks.
SIGSOFT Softw. Eng. Notes, 29(5):1–6, 2004.

[10] N. Nagappan, L. Williams, M. Vouk, and J. Osborne.
Early estimation of software quality using in-process
testing metrics: a controlled case study. In Proc. of the
Third Workshop on Software Quality, pages 1–7, New
York, NY, USA, 2005. ACM.

[11] H. M. Olague, S. Gholston, and S. Quattlebaum.
Empirical validation of three software metrics suites to
predict fault-proneness of object-oriented classes
developed using highly iterative or agile software
development processes. IEEE TSE, 33(6):402–419,
2007.

[12] S. Sharma. Applied Multivariate Techniques.
Addison-Wiley & Sons, Inc., USA, 1996.

[13] M.-H. Tang and M.-H. Chen. Measuring oo design
metrics from uml. In UML ’02: Proc. of the 5th Intnl.
Conference on The Unified Modeling Language, pages
368–382, London, UK, 2002. Springer-Verlag.

364

Table 4: Normalized vs Raw code measures

Project
Correctness Specificity Sensitivity

RFC NRFC RFC NRFC RFC NRFC

ECS 80% 80% 50% 100% 100% 67%

CRS 71% 57% 100% 80% 0% 0%

BNS 67% 33% 100% 50% 0% 0%

MYL-P01 63% 75% 59% 74% 80% 80%

MYL-P02 63% 75% 44% 81% 100% 63%

MYL-P03 72% 72% 78% 78% 43% 43%

MYL-P04 51% 67% 52% 75% 40% 0%

MYL-P05 48% 61% 52% 67% 0% 0%

MYL-P06 61% 85% 56% 83% 10% 100%

MYL-P07 62% 80% 59% 77% 77% 92%

MYL-P08 60% 80% 50% 88% 100% 50%

MYL-P09 75% 81% 74% 84% 83% 63%

MYL-P10 76% 90% 76% 94% 75% 75%

MYL-P11 74% 79% 72% 79% 100% 100%

MYL-P12 87.5% 87.5% 91.7% 91.7% 75% 75%

MYL-P13 56% 88% 50% 86% 100% 100%

Table 5: Normalized code vs UML measures

Model Project
Correctness Specificity Sensitivity

Code UML Code UML Code UML

NRFC

ECS 80% 80% 100% 100% 67% 67%

CRS 57% 64% 80% 80% 0% 25%

BNS 33% 67% 50% 75% 0% 50%

and Sensitivity (% of MF classes correctly classified).
Effect of Normalization on code measures
In Table 4, we are comparing the results of the 16 projects

and packages using only code measures, we can say that the
normalization procedure improved most of the results of the
RFC model, up to 32%, 50% and 15% more in Correctness,
Specificity, and Sensitivity, respectively.

Effect of Normalization on UML measures
Normalized UML measures did better than raw UML mea-

sures, considering that none of the raw UML measures could
detect MF classes, except for the UML measures of the ECS.

UML measures VS Code measures
In Table 5, the percentages of Correctness, Specificity and

Sensitivity obtained by the normalized code and UML met-
rics are shown. In general, the normalized UML RFC mea-
sures obtained equal, and in some cases better results, than
the normalized code RFC measures.

6. CONCLUSION AND FUTUREWORK
The results found in this study lead us to conclude that the

proposed UML RFC metric can predict faulty code as well
as the code RFC metric does. The elimination of outliers
and the normalization procedure used in this study were of
great utility, not just for enabling our UML metric to pre-
dict fault-proneness of code, using a code-based prediction
model, but also for improving the prediction results across
different packages and projects, using the same model. De-
spite our encouraging findings, external validity has not been
fully proved yet, and further empirical studies are needed,
especially with real data from the industry.

In hopes to improve our results, we expect to work in the
future with a purely UML-based prediction model and to
include other early metrics (obtainable before the implanta-

tion phase). If we can finally provide a more successful pre-
diction model, able to identify certainly which parts of the
design are prone to produce faulty code, project managers
can consider re-design, assign highly-competent developers
to implement cautiously those low-quality elements, or sim-
ply to monitor them closely. Thus, we would be preventing
faults and saving time and human resources.

7. REFERENCES
[1] S. Aksoy and R. M. Haralick. Feature normalization

and likelihood-based similarity measures for image
retrieval. Pattern Recogn. Lett., 22(5):563–582, 2001.

[2] A. L. Baroni and F. B. Abreu. An ocl-based
formalization of the moose metric suite. In 7th Intnl.
ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, 2003.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE TSE, 22(10):751–761, 1996.

[4] V. Bewick, L. Cheek, and J. Ball. Statistics review 14:
Logistic regression. Critical Care, 9(1), 2005.

[5] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter.
Exploring the relationship between design measures
and software quality in object-oriented systems. J.
Syst. Softw., 51(3):245–273, 2000.

[6] A. E. Camargo Cruz and K. Ochimizu. Quality
prediction model for object oriented software using
uml metrics. In Proc. of the 4th World Congress for
Software Quality, Bethesda, Maryland, USA, 2008.
American Society for Quality.

[7] A. E. Camargo Cruz and K. Ochimizu. Towards
logistic regression models for predicting fault-prone
code across software projects. In ESEM ’09: 3rd
International Symposium on Empirical Software
Engineering and Measurement, pages 460–463,
Washington, DC, USA, 2009. IEEE Computer Society.

[8] G. Hassan. Designing Concurrent, Distributed, and
Real-Time Applications with UML. Addison
Wesley-Object Technology Series Editors, Boston,
MA, USA, 2000.

[9] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan,
and P. Thambidurai. Object oriented software quality
prediction using general regression neural networks.
SIGSOFT Softw. Eng. Notes, 29(5):1–6, 2004.

[10] N. Nagappan, L. Williams, M. Vouk, and J. Osborne.
Early estimation of software quality using in-process
testing metrics: a controlled case study. In Proc. of the
Third Workshop on Software Quality, pages 1–7, New
York, NY, USA, 2005. ACM.

[11] H. M. Olague, S. Gholston, and S. Quattlebaum.
Empirical validation of three software metrics suites to
predict fault-proneness of object-oriented classes
developed using highly iterative or agile software
development processes. IEEE TSE, 33(6):402–419,
2007.

[12] S. Sharma. Applied Multivariate Techniques.
Addison-Wiley & Sons, Inc., USA, 1996.

[13] M.-H. Tang and M.-H. Chen. Measuring oo design
metrics from uml. In UML ’02: Proc. of the 5th Intnl.
Conference on The Unified Modeling Language, pages
368–382, London, UK, 2002. Springer-Verlag.

364

a.k.a. accuracy

a.k.a. precision

a.k.a. recall

Hall of Shame (continued)

Martin Shepperd 24

�  A paper in TSE (65 citations) has MCC= -0.47 ,
-0.31

�  Paper reported:

�  and concluded:

Table 6 shows the model parameters, Table 7 shows the
confusion matrices obtained from applying the two regres-
sion models, and Table 8 shows the results of evaluating
model specificity, sensitivity, precision, and the correspond-
ing rates for false positives and false negatives. From
Table 6, we find that !2 has a lower DIC than !1. Also from
Tables 7 and 8, !2 is more sensitive to finding fault prone
modules, achieves greater precision while having smaller
rates of false positive and false negative classification.

Thus, the functional form of the CPD for the fault
proneness node in our BN model uses !2 as the linear
predictor. Fig. 6 shows the BN model for fault proneness
analysis using this chosen functional form. The estimation
of the model is the marginal probability of observing a fault
over all the modules. Essentially, this means that we should
expect a 37.2 percent chance of finding at least one fault in a
class picked at random from the KC1 software system.

4.3 Discussion of Results

One of the goals of this paper is to experimentally evaluate
how Bayesian methods can be used for assessing software
fault content and fault proneness.

Given the results of performing multiple regression, we
find that the metrics WMC, CBO, RFC, and SLOC are very
significant for assessing both fault content and fault
proneness. Gyimóthy et al. [23] have found that this specific
set of predictors is very significant for assessing fault
content and fault proneness in large open source software
systems. Additionally, their study also finds LCOM and
DIT to be very significant for linear regression and NOC to
be the most insignificant for both analyses. Our results
indicate that neither DIT nor NOC are significant, but
LCOM seems to be useful when performing Poisson
regression; however, the linear model not containing LCOM
was better than the Poisson model containing it. Therefore,
depending on the underlying model used to relate the
metrics to fault content, LCOM is significant.

We did not have data related to the change in metrics for
subsequent releases of the KC1 system. Consequently, we
performed 10-fold cross validation to build a BN model that
estimates fault content at a statistically significant level. We
also used the K-S test to confirm the hypothesis that the
estimated distribution of fault content per module is not
significantly different from the data. Given these findings,
we believe that, once a BN model containing WMC, CBO,
RFC, and SLOC measures is built on a given release of a

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 5. Defect content estimation from the BN model.

TABLE 6
Multiple Regression Models (Logistic)

TABLE 7
Confusion MatricesEmpirical Analysis of Software Fault Content

and Fault Proneness Using Bayesian Methods
Ganesh J. Pai, Member, IEEE, and Joanne Bechta Dugan, Fellow, IEEE

Abstract—We present a methodology for Bayesian analysis of software quality. We cast our research in the broader context of

constructing a causal framework that can include process, product, and other diverse sources of information regarding fault introduction

during the software development process. In this paper, we discuss the aspect of relating internal product metrics to external quality
metrics. Specifically, we build a Bayesian network (BN) model to relate object-oriented software metrics to software fault content and fault

proneness. Assuming that the relationship can be described as a generalized linear model, we derive parametric functional forms for the
target node conditional distributions in the BN. These functional forms are shown to be able to represent linear, Poisson, and binomial

logistic regression. The models are empirically evaluated using a public domain data set from a software subsystem. The results show
that our approach produces statistically significant estimations and that our overall modeling method performs no worse than existing

techniques.

Index Terms—Bayesian analysis, Bayesian networks, defects, fault proneness, metrics, object-oriented, regression, software quality.

Ç

1 INTRODUCTION

THE notion of a good quality software product, from the
developer’s viewpoint, is usually associated with the

external quality metrics of 1) fault (or defect) content, i.e., the
number of errors in a software artifact, 2) fault density, i.e.,
fault content per thousand lines of code, or 3) fault proneness,
i.e., the probability that an artifact contains a fault. To guide
the software verification and testing effort, several measures
of software structural quality have been developed, e.g., the
Chidamber-Kemerer (C-K) suite of metrics [1], [2]. These
internal product metrics have been used in numerous models
which relate them to the external quality metrics [3], [4], [5],
[6], [7], [8], [9]. Owing to the belief that a high quality software
process will produce a high quality software product [10],
there are also some models in the literature which relate
certain process measures to fault content [11], [12], [13]. The
main idea in many of these existing approaches is to build a
statistical model that relates the product or process metrics to
the quality metrics.

Although one intuitively expects a high quality software
development process to yield a high quality product, there is
very little empirical evidence to support this belief. There is
also sufficient variation in the development process so that
faults enter the software from diverse sources. Many of these
sources do not yet have established measures to support their
inclusion in existing models for quality assessment, so they

are subjectively qualified, e.g., conformance of the executed
process to a process specification, quality of the development
team, quality of the verification process. Consequently, the
existing software quality assessment methods are insufficient
for including such sources. Furthermore, there does not yet
seem to be a standardized set of process measures that have
been empirically validated as significant for software quality
assessment. Besides these issues, Fenton et al. have identified
various shortcomings with existing approaches and indi-
cated the need for a causal model for quality assessment [14],
[15], [16], [17].

Thus, there is a need for both 1) empirically validating
the relationship of process measures with external quality
metrics and 2) building a repertoire of statistical models
which can incorporate existing product and process metrics,
as well as other sources of evidence that may have been
subjectively qualified.

Now, we briefly provide the context which motivates the
work described in this paper. One of the broad goals of this
work is to build a framework for quality assessment where we
use not only the available process and product measure-
ments, but also the evidence available from the diverse
sources influencing fault introduction. Elsewhere [18], we
have developed such a framework using Bayesian networks
(BN) [19], as shown in Fig. 1. In short, our idea is to

1. separately consider product measurements as one set
of factors that influence software quality,

2. separately consider the available process measure-
ments and subjectively qualifiable process properties
as another set of factors influencing quality,

3. redefine quality as the likelihood of observing proper-
ties of the software product, e.g., fault content, fault
proneness, reliability, and

4. build a model capable of relating all the input
variables to software quality.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007 675

. G.J. Pai is with the Fraunhofer Institute for Experimental Software
Engineering (IESE), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany.
E-mail: ganesh.pai@iese.fraunhofer.de.

. J.B. Dugan is with the Charles L. Brown Department of Electrical and
Computer Engineering, University of Virginia, 351 McCormick Road, PO
Box 400743, Charlottesville, VA 22904-4743. E-mail: j.b.dugan@ieee.org.

Manuscript received 6 Feb. 2007; revised 15 June 2007; accepted 19 June 2007;
published online 9 July 2007.
Recommended for acceptance by B. Littlewood.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0032-0207.
Digital Object Identifier no. 10.1109/TSE.2007.70722.

0098-5589/07/$25.00 ! 2007 IEEE Published by the IEEE Computer Society

Mar$n	
 Shepperd,	
 Brunel	
 University	
 13	

Misleading performance statistics
C. Catal, B. Diri, and B. Ozumut. (2007) in their
defect prediction study give precision, recall and
accuracy (0.682, 0.621, 0.641).

From this Bowes et al. compute an F-measure of
0.6501 [0,1]

But MCC is 0.2845 [-1,+1]

 25

ROC

26

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0,1 is optimal

1,0 is worst case

chance

All -ves

All +ves

‘good’

perverse

Mar$n	
 Shepperd,	
 Brunel	
 University	
 14	

Area Under the Curve

27

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Area under
the curve

(AUC)

Issues with AUC

28

� Reduce tradeoffs between TPR and FPR
to a single number

�  Straightforward where curve A strictly
dominates B -> AUCA > AUCB

� Otherwise problematic when real world
costs unknown

Mar$n	
 Shepperd,	
 Brunel	
 University	
 15	

Further Issues with AUC

29

� Cannot be computed when no +ve case
in a fold.

� Two different ways to compute with CV
(Forman and Scholz, 2010).
◦ WEKA v 3.6.1 uses the AUCmerge strategy in

its Explorer GUI and Evaluation core class for
CV, but AUCavg in the Experimenter interface.

So where do we go from here?

� Determine what effects we (better the
target users) are concerned with?
Multiple effects?

�  Informs fitness function
�  Focus on effect sizes (and large effects)
�  Focus on effects relative to random
� Better reporting

30

Mar$n	
 Shepperd,	
 Brunel	
 University	
 16	

References
[1] P. Baldi, et al., "Assessing the accuracy of prediction algorithms for classification: an

overview," Bioinformatics, vol. 16, pp. 412-424, 2000.

[2] D. Bowes, T. Hall, and D. Gray, "Comparing the performance of fault prediction
models which report multiple performance measures: recomputing the confusion
matrix," presented at PROMISE '12, Lund, Sweden, 2012.

[3] O. Carugo, "Detailed estimation of bioinformatics prediction reliability through the
Fragmented Prediction Performance Plots," BMC Bioinformatics, vol. 8, 2007.

[4] G. Forman and M. Scholz, "Apples-to-Apples in Cross-Validation Studies: Pitfalls in
Classifier Performance Measurement," ACM SIGKDD Explorations Newsletter, vol. 12,
2010.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A Systematic Literature
Review on Fault Prediction Performance in Software Engineering," IEEE
Transactions on Software Engineering, vol. 38, pp. 1276-1304, 2012.

[6] B. W. Matthews, "Comparison of the predicted and observed secondary structure
of T4 phage lysozyme," Biochimica et Biophysica Acta, vol. 405, pp. 442-451, 1975.

[7] D. Powers, "Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation," J. of Machine Learning Technol., vol. 2, pp. 37-63, 2011.

[8] Sing, T., et al., “ROCR: visualizing classifier performance in R,” Bioinformatics, vol. 21,
pp. 3940-3941, 2005.

31

