Michèle Sebag

TAO: Theme Apprentissage & Optimization

Acknowledgments: **Olivier Teytaud**, Sylvain Gelly, Philippe Rolet, Romaric Gaudel

CREST24, London, Jan. 30th, 2013

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Foreword

Disclaimer 1

- There is no shortage of tree-based approaches in software engineering...
- MCTS is about *approximate inference* (propagation or pruning: exact inference)

Disclaimer 2

- MCTS is related to Machine Learning
- Some words might have different meanings (e.g. consistency)

Motivations

- Toward automatization of SE: ML needed
- Which ML problem is this ?

Programming as an optimization problem

Wanted: For any problem instance, automatically

- Select algorithm/heuristics in a portfolio
- Tune hyper-parameters

A general problem, faced by

- Constraint Programming
- Stochastic Optimization
- Machine Learning, too...

1. Case-based learning / Metric learning

CP Hydra

Representation

Input

Observations

Output

- For any new instance, retrieve the nearest case
- (but what is the metric ?)

Weinberger et al, 09

2. Supervised Learning

Input

- Observations
- Target (best alg.)

Output: Prediction

- Classification
- Regression

SATzilla

Representation

From decision to sequential decision

Arbelaez et al. 11

- In each restart, predict the best heuristics
- ... it might solve the problem;
- otherwise the description is refined; iterate

Can we do better: Select the heuristics which will bring us where we'll be in good shape to select the best heuristics to solve the problem...

3. Reinforcement learning

Features

- An agent, temporally situated
- acts on its environment
- in order to maximize its cumulative reward

Learned output

A policy mapping each state onto an action

э

Formalisation

Notations

- State space S
- Action space \mathcal{A}
- Transition model
 - deterministic: s' = t(s, a)
 - probabilistic: $P_{s,s'}^a = p(s, a, s') \in [0, 1].$
- Reward r(s)

bounded

Time horizon H (finite or infinite)

Goal

- Find policy (strategy) $\pi : S \mapsto A$
- which maximizes cumulative reward from now to timestep H

$$\pi^* = \operatorname{argmax} \mathbb{E}_{s_{t+1} \sim p(s_t, \pi(s_t), s)} \left[\sum r(s_t) \right]$$

Reinforcement learning

Context

In an uncertain environment,

Some actions, in some states, bring (delayed) rewards [with some probability].

Goal: find the policy (state \rightarrow action) maximizing the expected cumulative reward

ъ

This talk is about sequential decision making

Reinforcement learning:
 First learn the optimal policy; then apply it

Monte-Carlo Tree Search:

Any-time algorithm: learn the next move; play it; iterate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MCTS: computer-Go as explanatory example

Not just a game: same approaches apply to optimal energy policy

・ロト ・母 ト ・ヨ ト ・ ヨ ・ うへぐ

MCTS for computer-Go and MineSweeper

Go: deterministic transitions MineSweeper: probabilistic transitions

The game of Go in one slide

Rules

- Each player puts a stone on the goban, black first
- Each stone remains on the goban, except:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

group w/o degree freedom is killed a group with two eyes can't be killed ► The goal is to control the max. territory

Go as a sequential decision problem

Features

- Size of the state space 2.10¹⁷⁰
- Size of the action space 200
- No good evaluation function
- Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- State space S
- Action space A
- Known transition model: p(s, a, s')
- Reward on final states: win or lose

Baseline strategies do not apply:

- Cannot grow the full tree
- Cannot safely cut branches
- Cannot be greedy

Monte-Carlo Tree Search

- An any-time algorithm
- Iteratively and asymmetrically growing a search tree most promising subtrees are more explored and developed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへの

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Returned solution:

MCTS Algorithm

Main

Input: number N of tree-walks Initialize search tree $\mathcal{T} \leftarrow$ initial state Loop: For i = 1 to NTreeWalk(\mathcal{T} , initial state) EndLoop Return most visited child node of root node

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ うへぐ

MCTS Algorithm, ctd

Tree walk

Input: search tree T, state s**Output:** reward r

```
If s is not a leaf node

Select a^* = \operatorname{argmax} \{\hat{\mu}(s, a), tr(s, a) \in \mathcal{T}\}

r \leftarrow \operatorname{TreeWalk}(\mathcal{T}, tr(s, a^*))

Else

\mathcal{A}_s = \{ \text{ admissible actions not yet visited in } s \}

Select a^* in \mathcal{A}_s

Add tr(a, a^*) as a bild node of a
```

```
Add tr(s, a^*) as child node of s
r \leftarrow \text{RandomWalk}(tr(s, a^*))
```

```
End If
```

```
Update n_s, n_{s,a^*} and \hat{\mu}_{s,a^*}
Return r
```

MCTS Algorithm, ctd

Random walk

Input: search tree T, state u**Output:** reward r

 $\mathcal{A}_{rnd} \leftarrow \{\} \ // \text{ store the set of actions visited in the random phase } While$ *u*is not final state

Uniformly select an admissible action a for u

$$\mathcal{A}_{rnd} \leftarrow \mathcal{A}_{rnd} \cup \{a\}$$

 $u \leftarrow \operatorname{tr}(u, a)$

EndWhile

 $r = \frac{Evaluate}{Return} r$

//reward vector of the tree-walk

くして 「「」 (山下) (山下) (山下) (山下)

Properties of interest

- Consistency: $Pr(finding optimal path) \rightarrow 1$ when the number of tree-walks go to infinity
- Speed of convergence; can be exponentially slow.

Coquelin Munos 07

Comparative results

2012	MoGoTW used for physiological measurements of human players		
2012	12 7 wins out of 12 games against professional players and 9 wins out of 12 games against 6D players		
		MoGoTW	
2011	20 wins out of 20 games in 7x7 with minimal computer komi	MoGoTW	
2011	First win against a pro (6D), H2, 13×13	MoGoTW	
2011	First win against a pro (9P), H2.5, 13×13	MoGoTW	
2011	First win against a pro in Blind Go, $9{ imes}9$	MoGoTW	
2010	Gold medal in TAAI, all categories 19 $ imes$ 19 $ imes$ 19 $ imes$ 13 $ imes$ 13, 9 $ imes$ 9	MoGoTW	
2009	Win against a pro (5P), 9 $ imes$ 9 (black)	MoGo	
2009	Win against a pro (5P), 9×9 (black)	MoGoTW	
2008	in against a pro (5P), 9×9 (white)	MoGo	
2007	Win against a pro (5P), 9×9 (blitz)	MoGo	
2009	Win against a pro (8P), 19 $ imes$ 19 H9	MoGo	
2009	Win against a pro (1P), 19 $ imes$ 19 H6	MoGo	
2008	Win against a pro (9P), 19 $ imes$ 19 H7	MoGo	

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Action selection as a Multi-Armed Bandit problem

In a casino, one wants to maximize one's gains *while playing*. Lifelong learning

Exploration vs Exploitation Dilemma

- Play the best arm so far ?
- But there might exist better arms...

Lai, Robbins 85

Exploitation Exploration

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The multi-armed bandit (MAB) problem

K arms

• Each arm gives reward 1 with probability μ_i , 0 otherwise

• Let
$$\mu^* = \operatorname{argmax}\{\mu_1, \dots, \mu_K\}$$
, with $\Delta_i = \mu^* - \mu_i$

▶ In each time t, one selects an arm i_t^* and gets a reward r_t

 $n_{i,t} = \sum_{u=1}^{t} \mathbb{1}_{i_u^*=i}$ number of times *i* has been selected $\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{i_u^*=i} r_u$ average reward of arm *i*

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

Minimize Regret
$$(t) = \sum_{u=1}^{t} (\mu^* - r_u) = t \mu^* - \sum_{i=1}^{K} n_{i,t} \hat{\mu}_{i,t} \approx \sum_{i=1}^{K} n_{i,t} \Delta_i$$

The simplest approach: ϵ -greedy selection

At each time t,

► With probability 1 - ε select the arm with best empirical reward

 $i_t^* = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$

• Otherwise, select i_t^* uniformly in $\{1 \dots K\}$

Regret $(t) > \varepsilon t \frac{1}{K} \sum_{i} \Delta_{i}$

Optimal regret rate: log(t)

Lai Robbins 85

Upper Confidence Bound

Auer et al. 2002

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{C \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Decision: Optimism in front of unknown !

Upper Confidence bound, followed

UCB achieves the optimal regret rate log(t)

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Extensions and variants

- Tune c_e control the exploration/exploitation trade-off
- ► UCB-tuned: take into account the standard deviation of µ̂_i: Select i^{*}_t = argmax

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}} + \min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

- Many-armed bandit strategies
- Extension of UCB to trees: UCT Kocsis & Szepesvári, 06

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action
 - Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes

```
Propagate
```

Bandit phase

- Returned solution:
 - Path visited most often

Random phase - Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Random phase - Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements ?

- Put stones randomly in the neighborhood of a previous stone
- Put stones matching patterns
- Put stones optimizing a value function

prior knowledge

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (*s*, *a*) in the tree-walk

$$\begin{array}{rcl} n_{s,a} & \leftarrow n_{s,a} + 1 \\ \hat{\mu}_{s,a} & \leftarrow \hat{\mu}_{s,a} + \frac{1}{n_{s,a}} (r - \mu_{s,a}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

Propagate

▶ For each node (*s*, *a*) in the tree-walk

$$\begin{array}{ll} n_{s,a} & \leftarrow n_{s,a} + 1 \\ \hat{\mu}_{s,a} & \leftarrow \hat{\mu}_{s,a} + \frac{1}{n_{s,a}} (r - \mu_{s,a}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \begin{cases} \min\{\hat{\mu}_x, x \text{ child of } (s, a)\} & \text{ if } (s, a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s, a)\} & \text{ if } (s, a) \text{ is a white node} \end{cases}$$

Dilemma

► smarter roll-out policy → more computationally expensive → less tree-walks on a budget

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Frugal roll-out → more tree-walks → more confident evaluations

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion and perspectives

Action selection revisited

Select
$$a^* = \operatorname{argmax} \left\{ \hat{\mu}_{s,a} + \sqrt{c_e \frac{\log(n_s)}{n_{s,a}}} \right\}$$

- Asymptotically optimal
- But visits the tree infinitely often !

Being greedy is excluded

not consistent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Frugal and consistent
Select
$$a^* = \operatorname{argmax} \frac{\operatorname{Nb win}(s, a) + 1}{\operatorname{Nb loss}(s, a) + 2}$$

Berthier et al. 2010
Further directions

Optimizing the action selection rule
Maes et al., 11

Controlling the branching factor

Introduce a new action when $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$ (which one ? See RAVE, below).

RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- Generalizing across the tree ?

Rapid Action Value Estimate, 2

Using RAVE for action selection In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s, a) + (1 - \beta)RAVE_{g}(s, a)\right)$$
$$\alpha = \frac{n_{s,a}}{n_{s,a} + c_{1}} \qquad \beta = \frac{n_{parent}(s)}{n_{parent}(s) + c_{2}}$$

Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$
- Select promising actions: it takes time to recover from bad ones

• Select argmax $RAVE_{\ell}(parent(s))$.

A limit of RAVE

- Brings information from bottom to top of tree
- Sometimes harmful:

B2 is the only good move for white B2 only makes sense as first move (not in subtrees) \Rightarrow RAVE rejects B2.

Improving the roll-out policy π

 π_0 Put stones uniformly in empty positions π_{random} Put stones uniformly in the neighborhood of a previous stone π_{MoGo} Put stones matching patterns π_{RLGO} Put stones optimizing a value functionSilver et al. 07

Beware!

Gelly Silver 07

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 π better $\pi' \Rightarrow MCTS(\pi)$ better $MCTS(\pi')$

Improving the roll-out policy π , followed

Evaluation error on 200 test cases

Interpretation

What matters:

- Being biased is more harmful than being weak...
- Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape then you go there and you are in bad shape...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using prior knowledge

Assume a value function $Q_{prior}(s, a)$

▶ Then when action *a* is first considered in state *s*, initialize

 $n_{s,a} = n_{prior}(s,a)$ equivalent experience / confidence of priors $\mu_{s,a} = Q_{prior}(s,a)$

The best of both worlds

- Speed-up discovery of good moves
- Does not prevent from identifying their weaknesses

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion and perspectives

Parallelization. 1 Distributing the roll-outs

Distributing roll-outs on different computational nodes does not work.

- Launch tree-walks in parallel on the same MCTS
- (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory

- Launch one MCTS per computational node
- k times per second

k = 3

Select nodes with sufficient number of simulations

 $>.05 \times \#$ total simulations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Aggregate indicators

Good news

Parallelization with and without shared memory can be combined.

It works !

32 cores against	Winning rate on 9×9	Winning rate on $19 imes 19$
1	75.8 ± 2.5	95.1 ± 1.4
2	66.3 ± 2.8	82.4 ± 2.7
4	62.6 ± 2.9	73.5 ± 3.4
8	59.6± 2.9	63.1 ± 4.2
16	52± 3.	63 ± 5.6
32	48.9± 3.	48 ± 10

Then:

Try with a bigger machine ! and win against top professional players !

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ Not so simple... there are diminishing returns.

Increasing the number N of tree-walks

N	2N against N		
	Winning rate on 9×9	Winning rate on $19 imes19$	
1,000	71.1 ± 0.1	90.5 ± 0.3	
4,000	68.7 ± 0.2	$84.5\pm0,3$	
16,000	66.5 ± 0.9	80.2 ± 0.4	
256,000	61± 0,2	58.5 ± 1.7	

The limits of parallelization

R. Coulom

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Improvement in terms of performance against humans

 \ll

Improvement in terms of performance against computers

 \ll

Improvements in terms of self-play

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion and perspectives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Why does it fail

- First simulation gives 50%
- Following simulations give 100% or 0%
- But MCTS tries other moves: doesn't see all moves on the black side are equivalent.

Implication 1

MCTS does not detect invariance \rightarrow too short-sighted and parallelization does not help.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Implication 2

MCTS does not build abstractions \rightarrow too short-sighted and parallelization does not help.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion and perspectives

MCTS for one-player game

- The MineSweeper problem
- Combining CSP and MCTS

 All locations have same probability of death 1/3

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Are then all moves equivalent ?

- All locations have same probability of death 1/3
- Are then all moves equivalent ? NO !

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- All locations have same probability of death 1/3
- Are then all moves equivalent ? NO !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

► Top, Bottom: Win with probability 2/3

- All locations have same probability of death 1/3
- Are then all moves equivalent ? NO !

- ▶ Top, Bottom: Win with probability 2/3
- MYOPIC approaches LOSE.

MineSweeper, State of the art

Markov Decision Process	Very expensive; 4×4 is solved
Single Point Strategy (SPS)	local solver

CSP

- Each unknown location j, a variable x[j]
- ▶ Each visible location, a constraint, e.g. $loc(15) = 4 \rightarrow$

x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4

- Find all N solutions
 P(mine in j) = number of solutions with mine in j N
- Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

- ▶ 80% success *beginner* (9×9, 10 mines)
- ▶ 45% success intermediate (16×16, 40 mines)
- 34% success expert (30×40, 99 mines)

PROS

Very fast

CONS

- Not optimal
- Beware of first move (opening book)

Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

- Cannot compete with CSP in terms of speed
- But consistent (find the optimal solution if given enough time)

Lesson learned

- Initial move matters
- UCT improves on CSP

- 3x3, 7 mines
- Optimal winning rate: 25%
- Optimal winning rate if uniform initial move: 17/72
- ► UCT improves on CSP by 1/72

UCT for MineSweeper

Another example

- 5x5, 15 mines
- GnoMine rule

(first move gets 0)

- if 1st move is center, optimal winning rate is 100 %
- UCT finds it; CSP does not.

The best of both worlds

CSP

- Fast
- Suboptimal (myopic)

UCT

- Needs a generative model
- Asymptotic optimal

Hybrid

UCT with generative model based on CSP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

UCT needs a generative model Given

- A state, an action
- Simulate possible transitions

Initial state, play top left

probabilistic transitions

FAST

Simulating transitions

- Using rejection (draw mines and check if consistent)
 SLOW
- Using CSP

The algorithm: Belief State Sampler UCT

- One node created per simulation/tree-walk
- Progressive widening
- Evaluation by Monte-Carlo simulation
- Action selection: UCB tuned (with variance)
- Monte-Carlo moves
 - If possible, Single Point Strategy (can propose riskless moves if any)
 - Otherwise, move with null probability of mines (CSP-based)
 - Otherwise, with probability .7, move with minimal probability of mines (CSP-based)

 Otherwise, draw a hidden state compatible with current observation (CSP-based) and play a safe move.

The results

- BSSUCT: Belief State Sampler UCT
- CSP-PGMS: CSP + initial moves in the corners

Format	CSP-PGMS	BSSUCT
4 mines on 4x4	$64.7 \ \%$	$70.0\%\pm0.6\%$
1 mine on 1 x3	$100 \ \%$	$100\%~(2000~{\rm games})$
3 mines on 2x5	22.6%	$25.4\%\pm\mathbf{1.0\%}$
$10 \text{ mines on } 5\mathrm{x}5$	8.20%	9% (p-value: 0.14)
5 mines on 1 x 10	12.93%	$18.9\%\pm0.2\%$
10 mines on 3x7	4.50%	${\bf 5.96\%\pm0.16\%}$
$15~\mathrm{mines}$ on $5\mathrm{x}5$	0.63%	$0.9\%\pm0.1\%$

Partial conclusion

Given a myopic solver

▶ It can be combined with MCTS / UCT:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Significant (costly) improvements

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion and perspectives

Active Learning, position of the problem

Supervised learning, the setting

- Target hypothesis h^{*}
- Training set $\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$
- Learn h_n from \mathcal{E}

Criteria

- Consistency: $h_n \rightarrow h^*$ when $n \rightarrow \infty$.
- ► Sample complexity: number of examples needed to reach the target with precision e

$$\epsilon \to n_{\epsilon} \text{ s.t. } ||h_n - h^*|| < \epsilon$$

Active Learning, definition

Passive learning

iid examples

$$\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$$

Active learning

 x_{n+1} selected depending on $\{(x_i, y_i), i = 1 \dots n\}$ In the best case, exponential improvement:

A motivating application

Numerical Engineering

- Large codes
- Computationally heavy ~ days
- not fool-proof

Inertial Confinement Fusion, ICF

Goal

Simplified models

- Approximate answer
- ... for a fraction of the computational cost
- Speed-up the design cycle
- Optimal design

More is Different

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alternative scheme : spherical target with a gold cone*

* Kodama et al. Nature 412 798 (2001); 418 933 (2002);

Active Learning as a Game

Ph. Rolet, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimization problem

Find
$$F^* = \operatorname{argmin}_{h \sim \mathcal{A}(\mathcal{E}, \sigma, T)} \operatorname{Err}(h, \sigma, T)$$

- \mathcal{E} : Training data set
- \mathcal{A} : Machine Learning algorithm
- $\mathcal{Z} {:} \ \mathsf{Set} \ \mathsf{of} \ \mathsf{instances}$
- $\sigma: \mathcal{E} \mapsto \mathcal{Z}$ sampling strategy
- T: Time horizon
- Err: Generalization error

Bottlenecks

- Combinatorial optimization problem
- Generalization error unknown

Where is the game ?

- Wanted: a good strategy to find, as accurately as possible, the true target concept.
- If this is a game, you play it only once !
- But you can train...

Training game: Iterate

- Draw a possible goal (fake target concept h^*); use it as oracle
- ► Try a policy (sequence of instances $\mathcal{E}_{h^*,T} = \{(x_1, h^*(x_1)), \dots (x_T, h^*(x_T))\}$
- ▶ Evaluate: Learn *h* from $\mathcal{E}_{h^*, T}$. Reward = $||h h^*||$

BAAL: Outline

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Take-home message: MCTS/UCT

- enables any-time smart look-ahead for better sequential decisions in front of uncertainty.
- is an integrated system involving two main ingredients:
 - Exploration vs Exploitation rule
 UCB, UCBtuned, others
 - Roll-out policy
- can take advantage of prior knowledge

Caveat

- The UCB rule was not an essential ingredient of MoGo
- ▶ Refining the roll-out policy ⇒ refining the system Many tree-walks might be better than smarter (biased) ones.

On-going, future, call to arms

Extensions

- \blacktriangleright Continuous bandits: action ranges in a ${\rm I\!R}$
- Contextual bandits: state ranges in \mathbb{R}^d
- Multi-objective sequential optimization

```
Bubeck et al. 11
Langford et al. 11
Wang Sebag 12
```

Controlling the size of the search space

- Building abstractions
- Considering nested MCTS (partially observable settings, e.g. poker)
- Multi-scale reasoning

Bibliography

- Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer: Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning 47(2-3): 235-256 (2002)
- Vincent Berthier, Hassen Doghmen, Olivier Teytaud: Consistency Modifications for Automatically Tuned Monte-Carlo Tree Search. LION 2010: 111-124
- Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári: X-Armed Bandits. Journal of Machine Learning Research 12: 1655-1695 (2011)
- Pierre-Arnaud Coquelin, Rémi Munos: Bandit Algorithms for Tree Search. UAI 2007: 67-74
- Rémi Coulom: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Computers and Games 2006: 72-83
- Romaric Gaudel, Michèle Sebag: Feature Selection as a One-Player Game. ICML 2010: 359-366

- Sylvain Gelly, David Silver: Combining online and offline knowledge in UCT. ICML 2007: 273-280
- Levente Kocsis, Csaba Szepesvári: Bandit Based Monte-Carlo Planning. ECML 2006: 282-293
- Francis Maes, Louis Wehenkel, Damien Ernst: Automatic Discovery of Ranking Formulas for Playing with Multi-armed Bandits. EWRL 2011: 5-17
- Arpad Rimmel, Fabien Teytaud, Olivier Teytaud: Biasing Monte-Carlo Simulations through RAVE Values. Computers and Games 2010: 59-68
- David Silver, Richard S. Sutton, Martin Müller: Reinforcement Learning of Local Shape in the Game of Go. IJCAI 2007: 1053-1058
- Olivier Teytaud, Michèle Sebag: Combining Myopic Optimization and Tree Search: Application to MineSweeper, LION 2012.