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The multiarmed bandit problem

K slot machines
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Each play of a slot machine (action) returns a payoff

Design a strategy of repeated play to maximize cumulative payoff

A classical problem in sequential design of experiments
[Robbins, 1952]

Motivating application: allocation of medical treatments

Modern applications: web content adaptation, heuristic selection,
routing, tree search
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Key issues

@ Partial feedback: payoff of each action changes over time, but only
the payoff of the played action is observed at each time step

e Exploration/Exploitation dilemma: Focusing on most promising
action (exploitation) may prevent the discovery of better actions
(exploration)

@ Payoff generation: What is a good generative model for payoffs?

Nonstochastic bandits

Sidestep the payoff modeling problem by avoiding any stochastic
assumption on the mechanism generating payoffs
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Online convex optimization with bandit feedback

Online version of gradient-free optimization

@ Closed and convex action space X C R4

e Hidden sequence {1, ¢, ... of convex loss functions {; : K — R4

@ A paradigm for robust optimization in a changing environment

@ Pick action X; € K

@ Observe value £ (X¢) of current loss function {; at Xy
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Performance measures
Regret of sequence X1, Xo, ...

T T T
Rt = Z e (Xe) — Z Ce(xT) where XT = argmin Z Ce(x)
t=1 t=1 x€X 1]

For all T, the total loss of action sequence Xj, ..., X1 must be close to
that of the best fixed action for any individual sequence {;, ..., {1 of
convex loss functions

Assuming T l¢(x) <1, regret must grow sublinearly with time T
t,xe
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Online gradient descent

Pick X; € X arbitrarily

Foreacht=1,2,...
@ Use X; € X and observe loss ¢ (X¢)
@ Compute estimate g of loss gradient V{(X¢)
@ Gradient step X{,; = X¢ — gz

© Projection step X1 = argmin ||x — X{_ |
xeX

Point X must simultaneously:

@ have small loss £ (X¢) (exploitation)

@ lead to a good gradient estimate g (exploration)

if A ;@
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Gradient descent without a gradient

[Flaxman, Kalai and McMahan, 2004]

@ Use a perturbed version of X¢:  X¢ +1U
(U is a random unit vector and r > 0)

- d
o Gradient estimate gy = ?Bt(Xt +ru)u

o Fact: If £ is differentiable, then
where B is a random vector in the unit sphere

@ gt estimates the gradient of a

locally smoothed version of £

««««««
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Guarantees

o If {; is Lipschitz, then the smoothed version is a good
approximation of {¢

@ Radius r of perturbation controls bias/variance trade-off

Regret of OGD for convex and Lipschitz loss sequences

ERt = O(T*%)
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Guarantees

@ If {; is Lipschitz, then the smoothed version is a good
approximation of (¢

@ Radius r of perturbation controls bias/variance trade-off

Regret of OGD for convex and Lipschitz loss sequences

ERt = O(T*%)

The linear case

@ Losses are linear functions on K,  £¢(x) = ¢ x

@ Can we achieve a better rate?
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Self-concordant functions [Abernethy, Hazan and Rakhlin, 2008]

@ Fact: any convex closed set K admits a self-concordant function F
(generally hard to find)

@ Variance control through the Dikin ellipsoid V2FC X

@ Loss estimate ft obtained via perturbed point  X; £ e; v/A;
{ei, Ai} is a randomly drawn eigenvector-eigenvalue pair

@ Run Online Mirror Descent regularized with a self-concordant
function for X

@ Regret for linear functions

Rt =0(VTInT)
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Online combinatorial optimization with bandit

feedback

@ Action space § C {0, 1]4
e Linear loss functions £ (x) = £ x

@ Loss estimates {

Example

K-armed bandits
§ = corners of the simplex
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Online Mirror Descent

[ ]
@ Run Online Mirror Descent in
X = convex hull of 8
@ Map current point X; € X to
distribution over 8§
[

This guarantees ERt = O(V/TInT) but...
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Issues

At each step t of OMD we need to:

@ Solve a convex program to compute next point in K

@ Solve t linear programs to compute a sparse distribution over 8
(via Frank-Wolfe algorithm)

Can we get /T regret in online linear optimization using only a
linear optimization oracle?
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Follow the perturbed leader

Add random perturbation Z; to loss estimates and pick action with
lowest perturbed loss

t
Xii1 = argminZ(f\s + Zt)Tx
XES

s=1

@ Requires a single call to a linear optimization oracle at each step
e However, best known bandit regret bound is suboptimal

Rt = 0(T*?)
@ Variance control through Z; is harder than in OMD
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Solution for a special case

The semi-bandit model
e Action space § C {0, 1}4

@ Linear loss functions (¢ (x) = €] x

@ Bandit feedbackis ¢/ X
@ Semi-bandit feedbackis {fi+ : Xit =1}

The stronger feedback allows to construct estimates {; with smaller
variance

Regret of FPL with Laplace perturbations

ERT = O(VT)
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Conclusion

@ In the convex case: optimal rate still unknown
(between T1/2 and T3/4)

o In the linear case: optimal rate T/2 attained only via convex
optimization

e In the combinatorial case: optimal rate T'/2 attained via linear
optimization, but using a stronger feedback model
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If you want to know more. ..

———T

S. Bubeck and N. Cesa-Bianchi (2012), “Regret Analysis of Stochastic
and Nonstochastic Multi-armed Bandit Problems”
Foundations and Trends in Machine Learning.
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