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The multiarmed bandit problem

. . . K slot machines

Each play of a slot machine (action) returns a payoff

Design a strategy of repeated play to maximize cumulative payoff

A classical problem in sequential design of experiments
[Robbins, 1952]

Motivating application: allocation of medical treatments
Modern applications: web content adaptation, heuristic selection,
routing, tree search
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Key issues

Partial feedback: payoff of each action changes over time, but only
the payoff of the played action is observed at each time step

Exploration/Exploitation dilemma: Focusing on most promising
action (exploitation) may prevent the discovery of better actions
(exploration)

Payoff generation: What is a good generative model for payoffs?

Nonstochastic bandits
Sidestep the payoff modeling problem by avoiding any stochastic
assumption on the mechanism generating payoffs
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Online convex optimization with bandit feedback

Online version of gradient-free optimization

Closed and convex action space K ⊆ Rd

Hidden sequence `1, `2 . . . of convex loss functions `t : K→ R+

A paradigm for robust optimization in a changing environment

For each t = 1, 2, . . .
1 Pick action Xt ∈ K

2 Observe value `t(Xt) of current loss function `t at Xt
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Performance measures

Regret of sequence X1,X2, . . .

RT =

T∑
t=1

`t(Xt) −

T∑
t=1

`t(x
∗
T ) where x∗T = argmin

x∈K

T∑
t=1

`t(x)

For all T , the total loss of action sequence X1, . . . ,XT must be close to
that of the best fixed action for any individual sequence `1, . . . , `T of
convex loss functions

Goal

Assuming max
t,x∈K

`t(x) 6 1, regret must grow sublinearly with time T
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Online gradient descent

Pick X1 ∈ K arbitrarily

For each t = 1, 2, . . .
1 Use Xt ∈ K and observe loss `t(Xt)

2 Compute estimate ĝt of loss gradient∇`t(Xt)

3 Gradient step X ′t+1 = Xt − ηĝt
4 Projection step Xt+1 = argmin

x∈K

∥∥x− X ′t+1
∥∥

Point Xt must simultaneously:

have small loss `t(Xt) (exploitation)
lead to a good gradient estimate ĝt (exploration)
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Gradient descent without a gradient
[Flaxman, Kalai and McMahan, 2004]

Use a perturbed version of Xt: Xt + rU
(U is a random unit vector and r > 0)

Gradient estimate ĝt =
d

r
`t(Xt + rU)U

Fact: If `t is differentiable, then
E
[
ĝt
]
= ∇E

[
`t(Xt + rB)

]
where B is a random vector in the unit sphere

ĝt estimates the gradient of a
locally smoothed version of `t
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Guarantees

Properties

If `t is Lipschitz, then the smoothed version is a good
approximation of `t

Radius r of perturbation controls bias/variance trade-off

Regret of OGD for convex and Lipschitz loss sequences

ERT = O
(
T 3/4)

The linear case

Losses are linear functions on K, `t(x) = `
>
t x

Can we achieve a better rate?
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Self-concordant functions [Abernethy, Hazan and Rakhlin, 2008]

Fact: any convex closed set K admits a self-concordant function F
(generally hard to find)
Variance control through the Dikin ellipsoid ∇2F ⊆ K

Loss estimate ̂̀t obtained via perturbed point Xt ± ei

√
λi

{ei, λi} is a randomly drawn eigenvector-eigenvalue pair
Run Online Mirror Descent regularized with a self-concordant
function for K

Regret for linear functions

RT = O
(√
T ln T

)
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Online combinatorial optimization with bandit
feedback

Setting

Action space S ⊆ {0, 1}d

Linear loss functions `t(x) = `>t x

Loss estimates ̂̀t
Example

K-armed bandits
S = corners of the simplex
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Online Mirror Descent

1 Run Online Mirror Descent in
K = convex hull of S

2 Map current point Xt ∈ K to
distribution over S

This guarantees ERT = O
(√
T ln T

)
but. . .
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Issues

At each step t of OMD we need to:

Solve a convex program to compute next point in K

Solve t linear programs to compute a sparse distribution over S
(via Frank-Wolfe algorithm)

Can we get
√
T regret in online linear optimization using only a

linear optimization oracle?
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Follow the perturbed leader

For each t = 1, 2, . . .
Add random perturbation Zt to loss estimates and pick action with
lowest perturbed loss

Xt+1 = argmin
x∈S

t∑
s=1

(̂
`s + Zt

)>
x

Requires a single call to a linear optimization oracle at each step

However, best known bandit regret bound is suboptimal

RT = O
(
T 2/3)

Variance control through Zt is harder than in OMD
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Solution for a special case

The semi-bandit model

Action space S ⊆ {0, 1}d

Linear loss functions `t(x) = `>t x

Bandit feedback is `>t Xt

Semi-bandit feedback is {`i,t : Xi,t = 1}

The stronger feedback allows to construct estimates ̂̀t with smaller
variance

Regret of FPL with Laplace perturbations

ERT = O
(√
T
)

N. Cesa-Bianchi (UNIMI) Bandits for Online Optimization 14 / 16



Conclusion

In the convex case: optimal rate still unknown
(between T 1/2 and T 3/4)

In the linear case: optimal rate T 1/2 attained only via convex
optimization

In the combinatorial case: optimal rate T 1/2 attained via linear
optimization, but using a stronger feedback model
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If you want to know more. . .

S. Bubeck and N. Cesa-Bianchi (2012), “Regret Analysis of Stochastic
and Nonstochastic Multi-armed Bandit Problems”
Foundations and Trends in Machine Learning.
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