
Code Change Impact Analysis for Testing
Configurable Software Systems

Mithun Acharya
ABB Corporate Research
Raleigh NC USA

ABB: A power and automation company

2

>125 years, >100 nations, ~150,000 employees

Power products and electronics, Control Systems,
Robotics, Smart Grid, Renewable Energy, …

ABB Corporate Research
Industrial Software Systems (ISS) research group

USA
Germany
Switzerland
Poland
Sweden
India
China

7 research centers worldwideRaleigh, NC

3

Software in ABB

4

Hardware with software
inside

Software with few
hardware components Pure Software

5

Software Evolution: A CSS constantly changes

Hundreds of such changes committed daily

Change Control Board meetings

6

Change impact visualizations
for managers for decision
making

Change impact at the code level
for developers

Unit/module-level change impact
for testers

Imp: Code change impact analysis for C/C++ programs

7

C
23

58
6

BUILD
SERVER

Impact database

Impact of C23567
Impact of C23586
Impact of C23712
Impact of changes since last nightly build
…

NIGHTLY BUILD

Version control
SERVER

CHECKOUT

IMP

Quantifiable risk/cost analysis of changes to CSS

8

Automated Dependency Analysis

Automated Risk/Cost Analysis Automated What-If Analysis

Will changes to foo.c, affect Bob’s module? Dependency analysis

3 days to release!!! Should I implement this feature or bug fix? What is the ‘best’ way to fix this bug or implement that new feature?

Automated Regression Testing
Should I re-run ALL of my test suite for this change? New tests required?

Overlay change impact with risky areas in code

Test suite

3941 lines vs. 6 lines

Program and System Dependence Graphs for Slicing

9

void main() {
int i = 1;
int sum = 0;
while (i<11) {

sum = add(sum, i);
i = add(i, 1);

}
printf("sum = %d\n", sum);
printf("i = %d\n", i);

}

static int add(int a, int b)
{

return(a+b);
}

Code/Image Source: GrammaTech

PDG for add

Program Dependence Graph (PDG) for main

S
ystem

 D
ependence G

raph (S
D

G
)

Making impact analysis practical and useful

10

Making impact analysis practical and useful

10

Mithun Acharya, Brian Robinson. Practical Change Impact Analysis based on Static
Program Slicing for Industrial Software Systems. ICSE 2011 SEiP, FSE 2012 (tool demo)

Mithun Acharya, Xiao Qu, Brian Robinson. Cross-System Change Impact Analysis Using
Test Cases. Under submission.

Scaling beyond million lines

Making impact analysis practical and useful

10

Mithun Acharya, Brian Robinson. Practical Change Impact Analysis based on Static
Program Slicing for Industrial Software Systems. ICSE 2011 SEiP, FSE 2012 (tool demo)

Mithun Acharya, Xiao Qu, Brian Robinson. Cross-System Change Impact Analysis Using
Test Cases. Under submission.

Testing configurable systems

Scaling beyond million lines

Xiao Qu, Mithun Acharya, Brian Robinson. Configuration Selection Using Code Change
Impact Analysis for Regression Testing. ICSM 2012

Xiao Qu, Mithun Acharya, Brian Robinson. Impact Analysis of Configuration Changes for
Test Case Selection. ISSRE 2011

Making impact analysis practical and useful

10

Mithun Acharya, Brian Robinson. Practical Change Impact Analysis based on Static
Program Slicing for Industrial Software Systems. ICSE 2011 SEiP, FSE 2012 (tool demo)

Mithun Acharya, Xiao Qu, Brian Robinson. Cross-System Change Impact Analysis Using
Test Cases. Under submission.

Testing configurable systems

Regression test selection

Scaling beyond million lines

Xiao Qu, Mithun Acharya, Brian Robinson. Configuration Selection Using Code Change
Impact Analysis for Regression Testing. ICSM 2012

Xiao Qu, Mithun Acharya, Brian Robinson. Impact Analysis of Configuration Changes for
Test Case Selection. ISSRE 2011

Tingting Yu, Xiao Qu, Mithun Achayra, Gregg Rothermel. Oracle-Based Regression Test
Selection. Under submission.

What configurations should we select for retesting?

11

Mithun Acharya, Brian Robinson. Practical Change Impact Analysis based on Static
Program Slicing for Industrial Software Systems. ICSE 2011 SEiP, FSE 2012 (tool demo)

Mithun Acharya, Xiao Qu, Brian Robinson. Cross-System Change Impact Analysis Using
Test Cases. Under submission.

Testing configurable systems

Regression test selection

Scaling beyond million lines

Xiao Qu, Mithun Acharya, Brian Robinson. Configuration Selection Using Code Change
Impact Analysis for Regression Testing. ICSM 2012

Xiao Qu, Mithun Acharya, Brian Robinson. Impact Analysis of Configuration Changes for
Test Case Selection. ISSRE 2011

Tingting Yu, Xiao Qu, Mithun Achayra, Gregg Rothermel. Oracle-Based Regression Test
Selection. Under submission.

Regression testing of CSS with code change impact analysis

12

Automated Dependency Analysis

Automated Risk/Cost Analysis Automated What-If Analysis

Will changes to foo.c, affect Bob’s module? Dependency analysis

3 days to release!!! Should I implement this feature or bug fix? What is the ‘best’ way to fix this bug or implement that new feature?

Automated Regression Testing
Should I re-run ALL of my test suite for this change? New tests required?

Overlay change impact with risky areas in code

Test suite

3941 lines vs. 6 lines

Outline

Motivation

Approach

Implementation

Empirical Evaluation

Conclusions

16

Configurable Software Systems

 Software that can be customized through a set of options
 Example: Internet Explorer

17

Configurable Software Systems

 Software that can be customized through a set of options
 Example: Internet Explorer

Configurable option: “Pop-up Blocker”

Values: ON, OFF18

Internet Explorer Configurations

C1 C2 …

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

19

Internet Explorer Configurations

C1 C2 …

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Option

20

Internet Explorer Configurations

C1 C2 …

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Option

Value

21

Internet Explorer Configurations

C1 C2 …

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Configuration instance C1 = {ON, Disabled, Yes, …}

Option

Value

22

Internet Explorer Configurations

C1 C2 …

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Configuration instance C1 = {ON, Disabled, Yes, …}

Option

Value

Configuration C1
23

Faulty System Behavior under Certain Configurations

I have discovered that using the newly
released IE 7 with Google Toolbar = Enabled
can cause the right-click menu to lose the
“Open In New Tab” option

Impact of Configurations on System Behavior

24

Impact of Configuration on System Behavior

To fix this, open IE7, click “Tools > Manage
Add-ons > Disable Google Toolbar”

25

Test Case: Open IE7, Right Click a link on webpage

C1 C2

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

26

Test Case: Open IE7, Right Click a link on webpage

C1 C2

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Test: PASS

27

Test Case: Open IE7, Right Click a link on webpage

C1 C2

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Test: PASS
Test: FAIL
No “Open in New Tab”

28

Test Case: Open IE7, Right Click a link on webpage

C1 C2

Pop Up Blocker ON ON …

Google Toolbar Disabled Enabled …

Do Not Track Yes Yes …

… … … …

Test: PASS
Test: FAIL
No “Open in New Tab”

A test case that passes with one configuration may fail with another
29

Configurations control system execution

IE7IE7

30

Configurations control system execution

C1 = {ON, disabled, Yes, …}

IE7IE7

31

Configurations control system execution

Test: PASS

C1 = {ON, disabled, Yes, …}

IE7IE7

32

Configurations control system execution

Test: PASS

C2 = {ON, enabled, Yes, …}C1 = {ON, disabled, Yes, …}

IE7IE7

33

Configurations control system execution

Test: FAILTest: PASS

C2 = {ON, enabled, Yes, …}C1 = {ON, disabled, Yes, …}

IE7IE7

34

Configurations control system execution

Test: FAILTest: PASS

C2 = {ON, enabled, Yes, …}C1 = {ON, disabled, Yes, …}

IE7IE7

Can we statically approximate how configurations (options) control system execution?

35

Challenges for testing configurable systems

36

Challenges for testing configurable systems

n options 2n configurations

37

Challenges for testing configurable systems

n options 2n configurations

IE7IE5
Product evolves

38

Challenges for testing configurable systems

n options 2n configurations

IE7IE5

T = {t1, t2, t3, t4, t5} T’ = {t2, t5}Test case selection

Product evolves

39

Challenges for testing configurable systems

n options 2n configurations

IE7IE5

T = {t1, t2, t3, t4, t5} T’ = {t2, t5}

{C1, C2, C3, C4, C5} {C1, C5}Configuration selection

Test case selection

Product evolves

40

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

41

{C1, C2, C3, C4, C5, …}

IE7

T = {t1, t2, t3, t4, t5}

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

Exponentially large set

42

{C1, C2, C3, C4, C5, …} {C1, C3, C4}

IE7

T = {t1, t2, t3, t4, t5}

Sampling

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

IE7

Exponentially large set Manageable size set

43

{C1, C2, C3, C4, C5, …} {C1, C3, C4}

IE7

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}

Sampling

No test case selection

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

IE7

Exponentially large set Manageable size set

44

{C1, C2, C3, C4, C5, …} {C1, C3, C4}

IE7

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}

Sampling

No test case selection

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

Example: Configuration Interaction Testing (CIT)

IE7

Exponentially large set Manageable size set

45

{C1, C2, C3, C4, C5, …} {C1, C3, C4}

IE7

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}

Sampling

No test case selection

Reducing the exponential number of configurations to a manageable size
Configuration Sampling

Example: Configuration Interaction Testing (CIT)

IE7

Exponentially large set Manageable size set

We choose to test IE7 only under sampled configurations C1, C3, and C4
and for each configurations we test IE7 with all tests {t1, t2, t3, t4, t5}

46

vim: A configurable system

47

vim: A configurable system

290 configurations

48

vim: A configurable system

290 configurations sampling CIT selects
60 configurations

49

vim: A configurable system

290 configurations sampling CIT selects
60 configurations

Rerun the full test suite on each 60 configurations

50

vim: A configurable system

290 configurations sampling CIT selects
60 configurations

Rerun the full test suite on each 60 configurations

7 hours to execute the full test suite
Takes 7*60 = 420 hours (~2.5 weeks) to run all test cases under each configuration

51

vim: A configurable system

290 configurations sampling CIT selects
60 configurations

Rerun the full test suite on each 60 configurations

Do we have to run all tests under each configuration?

7 hours to execute the full test suite
Takes 7*60 = 420 hours (~2.5 weeks) to run all test cases under each configuration

52

Test case selection when configuration under test
changes*

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
53

Test case selection when configuration under test
changes*

IE7

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
54

Test case selection when configuration under test
changes*

C1 = {ON, Disabled, Yes, …} C2 = {ON, Enabled, Yes, …}

IE7

Source code DOES NOT change

IE7
Configuration under test changes

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
55

Test case selection when configuration under test
changes*

C1 = {ON, Disabled, Yes, …} C2 = {ON, Enabled, Yes, …}

IE7

Source code DOES NOT change

IE7

T = {t1, t2, t3, t4, t5}

Configuration under test changes

What test cases should I re-run for the new configuration?

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
56

Test case selection when configuration under test
changes*

C1 = {ON, Disabled, Yes, …} C2 = {ON, Enabled, Yes, …}

IE7

Source code DOES NOT change

IE7

T = {t1, t2, t3, t4, t5} T’ = {t2, t5}

Configuration under test changes

What test cases should I re-run for the new configuration?

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
57

Test case selection when configuration under test
changes*

C1 = {ON, Disabled, Yes, …} C2 = {ON, Enabled, Yes, …}

IE7

Source code DOES NOT change

IE7

T = {t1, t2, t3, t4, t5} T’ = {t2, t5}

For the ABB system analyzed, only about 20% of the tests
had to be re-run for a configuration change

Configuration under test changes

What test cases should I re-run for the new configuration?

* Qu, Acharya, Robinson, “Impact analysis of configuration changes for test case selection”, ISSRE 2011
58

Product Evolution

Internet Explorer

IE1.0 & 2.0

IE5

IE6

IE7

59

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008
60

IE5

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5}

T = {t1, t2, t3, t4, t5}

61

IE7

Source code CHANGES

IE5

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5}

T = {t1, t2, t3, t4, t5}

62

IE7

Source code CHANGES

IE5

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5}

63

IE7

Source code CHANGES

IE5

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5}

Reorder and run as many as you can

64

IE7

Source code CHANGES

IE5

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

Reorder and run as many as you can

65

IE7

Source code CHANGES

IE5

Increases rate of fault detection. But…

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

Reorder and run as many as you can

66

IE7

Source code CHANGES

IE5

Increases rate of fault detection. But…

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

Does not eliminate redundancy.
Does not detect all faults. Not safe.

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

Reorder and run as many as you can

67

IE7

Source code CHANGES

IE5

Increases rate of fault detection. But…

Configuration prioritization for regression testing*

*Qu, Cohen, Rothermel, “Configuration-aware regression testing: An empirical study of sampling and prioritization”, ISSTA 2008

Does not eliminate redundancy.
Does not detect all faults. Not safe.

{C1, C2, C3, C4, C5} {C1, C4, C3. …}Prioritization

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

Can we select a subset of {C1, C2, C3, C4, C5} that is both non-redundant and safe?

Reorder and run as many as you can

68

Configuration selection for regression testing (Focus of this talk)

69

IE5

Configuration selection for regression testing (Focus of this talk)

{C1, C2, C3, C4, C5}

T = {t1, t2, t3, t4, t5}

70

IE7

Source code CHANGES

IE5

Configuration selection for regression testing (Focus of this talk)

{C1, C2, C3, C4, C5}

T = {t1, t2, t3, t4, t5}

71

IE7

Source code CHANGES

IE5

Configuration selection for regression testing (Focus of this talk)

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5}

72

IE7

Source code CHANGES

IE5

Configuration selection for regression testing (Focus of this talk)

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

73

IE7

Source code CHANGES

IE5

Configuration selection for regression testing (Focus of this talk)

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

{C1, C5} is both safe (wrt retest-all configurations) and non redundant

74

State of the Art in Configurable System Testing

Focus of
this talk

75

State of the Art in Configurable System Testing
 Configuration sampling
 Single version
 No test case selection
 Example, CIT

Focus of
this talk

76

State of the Art in Configurable System Testing
 Configuration sampling
 Single version
 No test case selection
 Example, CIT

 Test case selection [ISSRE ‘11]
 Single version
 Configuration under test changes
 Non-redundant
 Safe

Focus of
this talk

77

State of the Art in Configurable System Testing

 Configuration prioritization [ISSTA ‘08]
 Source code changes
 Regression Testing
 No test case selection
 Redundant
 Not safe

 Configuration sampling
 Single version
 No test case selection
 Example, CIT

 Test case selection [ISSRE ‘11]
 Single version
 Configuration under test changes
 Non-redundant
 Safe

Focus of
this talk

78

State of the Art in Configurable System Testing

 Configuration selection
[ICSM ‘12]
 Source code changes
 Regression testing
 Non-redundant
 Safe
 No test case selection

 Configuration prioritization [ISSTA ‘08]
 Source code changes
 Regression Testing
 No test case selection
 Redundant
 Not safe

 Configuration sampling
 Single version
 No test case selection
 Example, CIT

 Test case selection [ISSRE ‘11]
 Single version
 Configuration under test changes
 Non-redundant
 Safe

Focus of
this talk

79

Outline

Motivation

Approach

Implementation

Empirical Evaluation

Conclusions

80

Key Idea: Map configuration options to code

81

Key Idea: Map configuration options to code

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE5

82

Key Idea: Map configuration options to code

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE5 IE7

change

83

Key Idea: Map configuration options to code

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE5 IE7

change

84

Key Idea: Map configuration options to code

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

For ABB systems, configurable options (stored in a DB)
maps to variables in the source code

IE5 IE7

change

85

Key Idea: statically compute configuration option impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

86

Key Idea: statically compute configuration option impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

87

Key Idea: statically compute configuration option impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

88

Key Idea: statically compute configuration option impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

89

Key Idea: statically compute impact of the changes

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

90

Key Idea: Intersect configuration impact with change impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

91

Key Idea: Intersect configuration impact with change impact

Configuration options: {pop-up-blocker, Google Toolbar, Do Not Track}

IE7

Select configuration option “Google Toolbar” for regression testing
Safely discard “pop-up blocker” and “Do Not Track”92

Example Program

Configurable Options: {P1, P2, P3}

Mapping configurable options to source code

93

Example Program

Configurable Options: {P1, P2, P3}

Mapping configurable options to source code

94

Example Program

Configurable Options: {P1, P2, P3}

Mapping configurable options to source code

95

Example Program

Configurable Options: {P1, P2, P3}

Mapping configurable options to source code

96

Example Program

Configurable Options: {P1, P2, P3}

Mapping configurable options to source code

Function f1 changes

97

Example

98

Example

Options Values

P1 True False

P2 True False

P3 True False

Configurable Options

99

Example

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

100

Example
Simplified dependency graph

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

101

Impact of configuration option P1
f1, f2, f6, f7, and f8

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

102

Impact of configuration option P2
f7 and f8

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

103

Impact of configuration option P3
f4

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

104

Impact of changed function f1

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

f1, f2, and f6

105

Select option P1 and safely discard P2 and P3

Options Values

P1 True False

P2 True False

P3 True False

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurable Options

Configurations by pair-wise CIT

106

Select option P1 and safely discard P2 and P3

Options Values

P1 True False

P2 True False

P3 True False

Configurable Options

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Configurations by pair-wise CIT

107

Outline

Motivation

Configuration Selection Approach

Implementation

Empirical Evaluation

Conclusions

108

Research Questions

Effectiveness

1

How does our
selection
compare to
retest-all, in terms
of fault detection?

2

What percentage
of configurations
is discarded as
redundant by our
selection?

Efficiency

3

How much
regression time
can our selection
save?

109

Research Questions

Effectiveness

1

How does our
selection
compare to
retest-all, in terms
of fault detection?

2

What percentage
of configurations
is discarded as
redundant by our
selection?

Efficiency

3

How much
regression time
can our selection
save?

110

Subjects

 Make (Software Infrastructure Repository)
 V3.77 to v3.78.1
 LOC: ≈ 15k LOC
 Code changes: selects 60 from 869
 Seeded 15 faults
 Configurable options: 11 (binary) 7 configurations

 Grep
 V1.0 to V2.0
 LOC: ≈ 8k LOC
 Code changes: 15
 Seeded 15 faults
 Configurable options: 14 (binary) 7 configurations

111

Results

Make Grep
Retest-all 8/15 6/15
Our selection 8/15 6/15
Random selection 3/15 5/15

Fault Detection Ability

112

Results

Make Grep
Retest-all 8/15 6/15
Our selection 8/15 6/15
Random selection 3/15 5/15

Fault Detection Ability

Our approach is safe wrt retest-all configurations

113

Research Questions

Effectiveness

1

How does our
selection
compare to
retest-all, in terms
of fault detection?

2

What percentage
of configurations
is discarded as
redundant by our
selection?

Efficiency

3

How much
regression time
can our selection
save?

114

Subject

 LOC: 1.18 MLOC
 Number of Functions: 20,432 functions
 Code changes: 203
 Configurable options: 545 (number of values range from 2 to 9) 159

configurations
 Among the 203 changes, we selected three sets of 30 changes for analysis

ABB1

115

Results
Percentage of configurations selected

NUMBER OF CONFIGURABLE OPTIONS SELECTED

NUMBER OF CONFIGURATIONS SELECTED

Change set 1 Change set 2 Change set 3 Average
Retest-all 545
Selected 167 161 161 163
reduction 69% 70% 70% 70%

Change set 1 Change set 2 Change set 3 Average
Retest-all 159
Selected 120 120 120 120
reduction 25% 25% 25% 25%

116

Research Questions

Effectiveness

1

How does our
selection
compare to
retest-all, in terms
of fault detection?

2

What percentage
of configurations
is discarded as
redundant by our
selection?

Efficiency

3

How much
regression time
can our selection
save?

117

Results
Testing time savings

grep make ABB1
Testing
time

Retest-all 70m 700m 795h
Our approach 60m 300m 600h

Overhead
of selection

5.2m 13m 28h

Time
savings

5m 387m 167h
50% 55% 21%

118

Results
Testing time savings

grep make ABB1
Testing
time

Retest-all 70m 700m 795h
Our approach 60m 300m 600h

Overhead
of selection

5.2m 13m 28h

Time
savings

5m 387m 167h
50% 55% 21%

Our configuration selection approach saves about
20-55% of testing time wrt retest-all configurations

119

Better than random, safe wrt retest-all

safe

Effectiveness

1

How does our
selection
compare to
retest-all and
random in terms
of fault detection?

15 – 60%

2

What percentage
of configurations
is discarded as
redundant by our
selection?

Efficiency

20 – 55%

3

How much
regression time
can our selection
save?

120

Outline

Motivation

Configuration Selection Approach

Implementation

Empirical Evaluation

Conclusions

121

First configuration selection approach for regression testing

122

IE7

Source code CHANGES

IE5

First configuration selection approach for regression testing

123

IE7

Source code CHANGES

IE5

First configuration selection approach for regression testing

{C1, C2, C3, C4, C5} {C1, C5}Selection

124

IE7

Source code CHANGES

IE5

First configuration selection approach for regression testing

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

125

IE7

Source code CHANGES

IE5

First configuration selection approach for regression testing

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

{C1, C5} is both safe (wrt retest-all configurations) and non redundant

126

IE7

Source code CHANGES

IE5

First configuration selection approach for regression testing

{C1, C2, C3, C4, C5} {C1, C5}Selection

T = {t1, t2, t3, t4, t5} T’ = {t1, t2, t3, t4, t5}No test case selection

{C1, C5} is both safe (wrt retest-all configurations) and non redundant

In our experiments, 15-60% of configurations were
discarded as redundant saving 20-55% of regression testing time

127

128

