

Optimizing Geometric Forms Trends and Challenges

Niloy J. Mitra

Reader (Associate Professor) Geometric Modeling and Computer Graphics

ШШ

Research Team

- Youyi Zheng (postdoc)
- Sawsan Alhalawani
- Melinos Averkiou
- Bongjin Koo
- Han Liu

and *collaborators* ...

Funding: Marie Curie Grant, Adobe Research Grant, UCL Impact grant

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

games/movies

virtual worlds

[images from various online sources]

Niloy J. Mitra

Optimizing Geometric Forms

games/movies

architectural design

virtual worlds

manufacturing

[images from various online sources]

Niloy J. Mitra

Optimizing Geometric Forms

games/movies

architectural design

virtual worlds

manufacturing

assisted surgery [images from various online sources]

Optimizing Geometric Forms

Niloy J. Mitra

games/movies

architectural design

digital archival

virtual worlds

manufacturing

assisted surgery [images from various online sources]

Thursday, 14 February 13

Niloy J. Mitra

Creating Geometry: 3D Modelers

Bonzai3D screenshot

Niloy J. Mitra

Optimizing Geometric Forms

Creating Geometry: 3D Modelers

Bonzai3D screenshot

[images from various online sources]

Optimizing Geometric Forms

Niloy J. Mitra

Niloy J. Mitra

Optimizing Geometric Forms

laser scanner

Niloy J. Mitra

Optimizing Geometric Forms

laser scanner

3D geometry

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

contact

Niloy J. Mitra

Optimizing Geometric Forms

L

symmetry

contact

Niloy J. Mitra

Optimizing Geometric Forms

symmetry

$$|a_y - b_y| = \frac{a_h + b_h}{2}$$

contact

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

aRb and $bRc \Rightarrow aRc$

Niloy J. Mitra

Optimizing Geometric Forms

aRb and $bRc \Rightarrow aRc$

$$T_{ab} \cdot T_{bc} \cdot T_{ca} = I$$

Niloy J. Mitra

Optimizing Geometric Forms

aRb and $bRc \Rightarrow aRc$

$$T_{ab} \cdot T_{bc} \cdot T_{ca} = I$$

a_{00}	a_{10}	a_{20}	a_{30}	a_{40} -
a_{01}	a_{11}	a_{21}	a_{31}	a_{41}
a_{02}	a_{12}	a_{22}	a_{32}	a_{42}
a_{03}	a_{13}	a_{23}	a_{33}	a_{43}
a_{04}	a_{14}	a_{24}	a_{34}	a_{44}

Niloy J. Mitra

Optimizing Geometric Forms

aRb and $bRc \Rightarrow aRc$

$$T_{ab} \cdot T_{bc} \cdot T_{ca} = I$$

a_{00}	a_{10}	a_{20}	a_{30}	a_{40} -
•	a_{11}	a_{21}	a_{31}	a_{41}
•	•	a_{22}	a_{32}	a_{42}
•	•	•	a_{33}	a_{43}
•	•	•	•	a_{44}

Niloy J. Mitra

Optimizing Geometric Forms

aRb and $bRc \Rightarrow aRc$

$$T_{ab} \cdot T_{bc} \cdot T_{ca} = I$$

$$\begin{bmatrix} a_{00} & a_{10} & ? & a_{30} & ? \\ \cdot & a_{11} & a_{21} & ? & a_{41} \\ \cdot & \cdot & a_{22} & a_{32} & a_{42} \\ \cdot & \cdot & \cdot & a_{33} & a_{43} \\ \cdot & \cdot & \cdot & \cdot & a_{44} \end{bmatrix}$$

Niloy J. Mitra

Optimizing Geometric Forms

Thursday, 14 February 13

Niloy J. Mitra

Structure among Relations

aRb and $bRc \Rightarrow aRc$

$$T_{ab} \cdot T_{bc} \cdot T_{ca} = I$$

	a_{10}	?	a_{30}	?	-
•	a_{11}	a_{21}	?	a_{41}	
•	•	a_{22}	a_{32}	a_{42}	
•	•	•	a_{33}	a_{43}	
.	•	•	•	a_{44}	

exploit 'structure' for compactness (redundancy) robustness (constraints)

Discrete vs. Continuous

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

• **Discrete**: Selection among ambiguous relations

Niloy J. Mitra

Optimizing Geometric Forms

- **Discrete**: Selection among ambiguous relations
- Continuous:
 - Global optimization
 - Refine/couple parameters

- **Discrete**: Selection among ambiguous relations
- Continuous:
 - Global optimization
 - Refine/couple parameters
- Mixed integer formulations

Niloy J. Mitra

- **Discrete**: Selection among ambiguous relations
- Continuous:
 - Global optimization
 - Refine/couple parameters
- Mixed integer formulations
- Common Challenges
 - Large systems (order of 50k-100k variables)
 - Robust initialization and relative weightings
 - Large search space based on parameterization

Niloy J. Mitra

1) Heterogeneous data

Niloy J. Mitra

Optimizing Geometric Forms

1) Heterogeneous data

incomplete, sparse, noisy pointsets

Niloy J. Mitra

Optimizing Geometric Forms
2) Massive data volumes

Niloy J. Mitra

Optimizing Geometric Forms

3) Simplified interactions

Niloy J. Mitra

Optimizing Geometric Forms

3) Simplified interactions

Niloy J. Mitra

Optimizing Geometric Forms

3) Simplified interactions

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

geometry → high level structures, respect global constraints

Niloy J. Mitra

Optimizing Geometric Forms

intelligently reuse existing content

geometry → high level structures, respect global constraints

Niloy J. Mitra

Optimizing Geometric Forms

Research Theme

Niloy J. Mitra

Optimizing Geometric Forms

Research Theme

Niloy J. Mitra

Optimizing Geometric Forms

'Models of Data'

Niloy J. Mitra

Optimizing Geometric Forms

'Models of Data'

low-level geometry \rightarrow (structure+element) + variations

Niloy J. Mitra

Optimizing Geometric Forms

Given object S, extract regions s₁ and s₂, such that: $s_1 \sim T(s_2) : s_1, s_2 \in S$

Niloy J. Mitra

Optimizing Geometric Forms

Given object S, extract regions s_1 and s_2 , such that:

$$s_1 \sim T(s_2) : s_1, s_2 \in S$$

Niloy J. Mitra

Optimizing Geometric Forms

Given object S, extract regions s₁ and s₂, such that: $s_1 \sim T(s_2) : s_1, s_2 \in S$

Niloy J. Mitra

Optimizing Geometric Forms

Given object S, extract regions s_1 and s_2 , such that:

$$s_1 \sim T(s_2) : s_1, s_2 \in S$$

Niloy J. Mitra

Optimizing Geometric Forms

Detecting Symmetries

[Siggraph 2006]

Niloy J. Mitra

Optimizing Geometric Forms

Detecting Symmetries

[Siggraph 2006]

Niloy J. Mitra

Optimizing Geometric Forms

Detecting Symmetries

low-level geometry → (structure+element) + variations

[Siggraph 2006]

Niloy J. Mitra

Optimizing Geometric Forms

low-level geometry \rightarrow (structure+element) + variations

[Siggraph 2008]

Niloy J. Mitra

Optimizing Geometric Forms

low-level geometry \rightarrow (structure+element) + variations

[Siggraph 2008]

Niloy J. Mitra

Optimizing Geometric Forms

low-level geometry \rightarrow (structure+element) + variations

[Siggraph 2008]

Niloy J. Mitra

Optimizing Geometric Forms

low-level geometry \rightarrow (structure+element) + variations

Niloy J. Mitra

Optimizing Geometric Forms

'Find and Replace'

Niloy J. Mitra

Optimizing Geometric Forms

'Find and Replace'

Niloy J. Mitra

Optimizing Geometric Forms

'Find and Replace'

Niloy J. Mitra

Optimizing Geometric Forms

Enhancing Repetitions

[Siggraph 2010]

Optimizing Geometric Forms

Niloy J. Mitra

Enhancing Repetitions

typical cost saving ~ 70-80%

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

Enhancing Repetitions

low-level geometry → (structure+element) + variations

typical cost saving ~ 70-80%

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

Fabrication-aware Design

[http://www.eiffel-tower.com/news/top-story/199.html]

Niloy J. Mitra

Optimizing Geometric Forms

Scalable Acquisition

Scalable Acquisitio

Reconstructing From Images

Input: Collection of images of a building facade

Factored Facades

repetition detection & optimization

line and transformation initialization

Niloy J. Mitra

Optimizing Geometric Forms

Smart Interactions

Niloy J. Mitra

Optimizing Geometric Forms

Relations across Features

Niloy J. Mitra

Optimizing Geometric Forms
Algorithm

Niloy J. Mitra

Optimizing Geometric Forms

Sample Edit Session

Niloy J. Mitra

Optimizing Geometric Forms

Input Model

How Things Work Visualization

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

Input Model

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

Input Model

Motion and Interaction Analysis

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

[Siggraph 2010]

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

why does this work?

Niloy J. Mitra

Optimizing Geometric Forms

• Given:

single *constrained* mesh (mesh + constraints)

Niloy J. Mitra

Optimizing Geometric Forms

• Given:

single *constrained* mesh (mesh + constraints)

• Goal:

Niloy J. Mitra

Optimizing Geometric Forms

• Given:

single *constrained* mesh (mesh + constraints)

• Goal:

- characterize/navigate *neighboring* constrained meshes

Niloy J. Mitra

Optimizing Geometric Forms

• Given:

single *constrained* mesh (mesh + constraints)

- Goal:
 - characterize/navigate *neighboring* constrained meshes
 - navigate only the good ones

Niloy J. Mitra

Optimizing Geometric Forms

 $\mathbf{x} = (v_1, \dots, v_n) \in \mathbb{R}^D$

[SiggraphA 2011]

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{x} = (v_1, \dots, v_n) \in \mathbb{R}^D$$

• mesh \rightarrow point

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{x} = (v_1, \dots, v_n) \in \mathbb{R}^D$$

• mesh \rightarrow point

combinatorics remain fixed

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{x} = (v_1, \dots, v_n) \in \mathbb{R}^D$$

• mesh \rightarrow point

combinatorics remain fixed

• starting mesh \mathbf{x}_0 satisfies (nonlinear) constraints

[SiggraphA 2011]

Niloy J. Mitra

Optimizing Geometric Forms

Intersection Surface

Each face constraint

$$\Gamma_i := \{ \mathbf{x} \in \mathbb{R}^D : E_i(\mathbf{x}) = 0 \} \quad \forall \quad i = 1, \dots, m$$

Niloy J. Mitra

Optimizing Geometric Forms

Intersection Surface

Each face constraint

$$\Gamma_i := \{ \mathbf{x} \in \mathbb{R}^D : E_i(\mathbf{x}) = 0 \} \quad \forall \quad i = 1, \dots, m$$
$$\mathbf{d} \Rightarrow \mathbf{x}_0 + \mathbf{d}$$

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{S}(\mathbf{u}) = \mathbf{x}_0 + \sum_{i=1}^{D-m} u_i \mathbf{e}_i + \frac{1}{2} \sum_{j=1}^m (\mathbf{u}^T \cdot A_j \cdot \mathbf{u}) \mathbf{n}_j$$
$$E_i(\mathbf{x}) = E_i(\mathbf{x}_0) + \nabla E_i^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_i \cdot (\mathbf{x} - \mathbf{x}_0)$$
$$+ o(\|\mathbf{x} - \mathbf{x}_0\|^2)$$

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{S}(\mathbf{u}) = \mathbf{x}_0 + \sum_{i=1}^{D-m} u_i \mathbf{e}_i + \frac{1}{2} \sum_{j=1}^m (\mathbf{u}^T \cdot A_j \cdot \mathbf{u}) \mathbf{n}_j$$
$$E_i(\mathbf{x}) = E_i(\mathbf{x}_0) + \nabla E_i^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_i \cdot (\mathbf{x} - \mathbf{x}_0) + o(||\mathbf{x} - \mathbf{x}_0||^2)$$

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{S}(\mathbf{u}) = \mathbf{x}_0 + \sum_{i=1}^{D-m} u_i \mathbf{e}_i + \frac{1}{2} \sum_{j=1}^m (\mathbf{u}^T \cdot A_j \cdot \mathbf{u}) \mathbf{n}_j$$
$$E_i(\mathbf{x}) = E_i(\mathbf{x}_0) + \nabla E_i^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_i \cdot (\mathbf{x} - \mathbf{x}_0) + o(||\mathbf{x} - \mathbf{x}_0||^2)$$

 $E_i(\mathbf{u}) = E_i(\mathbf{x}_0)$

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{S}(\mathbf{u}) = \mathbf{x}_0 + \sum_{i=1}^{D-m} u_i \mathbf{e}_i + \frac{1}{2} \sum_{j=1}^m (\mathbf{u}^T \cdot A_j \cdot \mathbf{u}) \mathbf{n}_j$$
$$E_i(\mathbf{x}) = E_i(\mathbf{x}_0) + \nabla E_i^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_i \cdot (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|^2)$$

$$E_i(\mathbf{u}) = E_i(\mathbf{x}_0) + \frac{1}{2} \sum_{j=1}^m (\nabla E_i^T \cdot \mathbf{n}_j) (\mathbf{u}^T \cdot A_j \cdot \mathbf{u})$$

Niloy J. Mitra

Optimizing Geometric Forms

$$\mathbf{S}(\mathbf{u}) = \mathbf{x}_0 + \sum_{i=1}^{D-m} u_i \mathbf{e}_i + \frac{1}{2} \sum_{j=1}^m (\mathbf{u}^T \cdot A_j \cdot \mathbf{u}) \mathbf{n}_j$$
$$E_i(\mathbf{x}) = E_i(\mathbf{x}_0) + \nabla E_i^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_i \cdot (\mathbf{x} - \mathbf{x}_0) + o(||\mathbf{x} - \mathbf{x}_0||^2)$$

$$E_{i}(\mathbf{u}) = E_{i}(\mathbf{x}_{0}) + \frac{1}{2} \sum_{j=1}^{m} (\nabla E_{i}^{T} \cdot \mathbf{n}_{j}) (\mathbf{u}^{T} \cdot A_{j} \cdot \mathbf{u})$$
$$+ \frac{1}{2} \sum_{p=1}^{D-m} \sum_{q=1}^{D-m} (\mathbf{e}_{p}^{T} \cdot H_{i} \cdot \mathbf{e}_{q}) u_{p} u_{q} + o(\|\mathbf{u}\|^{2})$$

Niloy J. Mitra

Optimizing Geometric Forms

Walking on the Tangent Space

Niloy J. Mitra

Optimizing Geometric Forms

Walking on the Tangent Space

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Walking on the Tangent Space

Niloy J. Mitra

Optimizing Geometric Forms

Design Exploration

Flat Circular Mesh Exploration

Niloy J. Mitra

Optimizing Geometric Forms

Beyond Model-Pairs

Niloy J. Mitra

Optimizing Geometric Forms

Exploring Data Collections

low-level geometry → (structure+element) + variations

(a) input collection

[Siggraph 2011]

Niloy J. Mitra

Optimizing Geometric Forms

Exploring Data Collections

low-level geometry -> (structure-element) + variations

(a) input collection

(b) template deformation model

Niloy J. Mitra

Optimizing Geometric Forms
Exploring Data Collections

low-level geometry -> (structure-element) + variations

[Siggraph 2011]

Optimizing Geometric Forms

Niloy J. Mitra

Exploring Data Collections

low-level geometry -> (structure-element) + variations

(a) input collection

(b) template deformation model

(c) constrained exploration

without correspondences

[Siggraph 2011]

Niloy J. Mitra

Optimizing Geometric Forms

Exploring Data Collections

Niloy J. Mitra

Optimizing Geometric Forms

With Fuzzy Correspondence

Niloy J. Mitra

Optimizing Geometric Forms

When Force Drives Form

Niloy J. Mitra

Optimizing Geometric Forms

When Force Drives Form

[Siggraph 2012]

Optimizing Geometric Forms

Niloy J. Mitra

When Force Drives Form

[Siggraph 2012]

Optimizing Geometric Forms

Niloy J. Mitra

 $\Gamma := \{X_1, X_2, \ldots\}$

Guided Exploration

Niloy J. Mitra

Optimizing Geometric Forms

"Forms as Force Diagrams"

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms

Same for Indoors

boine Segmentation	
2D 3D	
WWI Sca	
egitimi 5.0	
Approx. 0.0	
0.05	
Hatoriwi, So	
ates: 5.0	
aler 148 Loter	
Table Transfer de ch	
101010 1	
04-0.10 0	
(06*2.16. 3	
V u W a	
t a HT a	
le stut	
Des	
all filteres	
Cost	
Della .	
AND PL	

Niloy J. Mitra

Optimizing Geometric Forms

• low-level geometry \Rightarrow high-level abstraction

Niloy J. Mitra

Optimizing Geometric Forms

- low-level geometry ⇒ high-level abstraction
- symmetry, relations, contacts, etc. are good candidates

Niloy J. Mitra

Optimizing Geometric Forms

- low-level geometry \Rightarrow high-level abstraction
- symmetry, relations, contacts, etc. are good candidates
- capture the necessary dimensions

- low-level geometry \Rightarrow high-level abstraction
- symmetry, relations, contacts, etc. are good candidates
- capture the necessary dimensions

- low-level geometry \Rightarrow high-level abstraction
- symmetry, relations, contacts, etc. are good candidates
- capture the necessary dimensions

discrete/continuous (global) optimization

Niloy J. Mitra

Optimizing Geometric Forms

- low-level geometry \Rightarrow high-level abstraction
- symmetry, relations, contacts, etc. are good candidates
- capture the necessary dimensions

- discrete/continuous (global) optimization
- pattern finding in high dimensions

Niloy J. Mitra

Optimizing Geometric Forms

thank YOU

http://www.cs.ucl.ac.uk/staff/N.Mitra/

Niloy J. Mitra

Optimizing Geometric Forms

Niloy J. Mitra

Optimizing Geometric Forms