A hypothetical model of spontaneous creativity in improvisation

Geraint A. Wiggins
Centre for Digital Music
Queen Mary, University of London
Outline

• What I mean by “spontaneous creativity”

• A hypothetical model of cognitive selection that accounts for inspiration
 ‣ Statistical models of cognitive process
 ‣ Information theory

• Extending the model to interactive creativity

• Evaluation – a difficult problem

• Motivation
 ‣ (overall) WHERE DO (MUSICAL) IDEAS COME FROM?
 ‣ (today) HOW DOES (MUSICAL) INTERACTION HAPPEN?
Two kinds of creativity

• One aspect of creativity is **SPONTANEOUS CREATIVITY**
 ‣ ideas appear, spontaneously, in consciousness
 ‣ cf. Mozart (Holmes, 2009, p. 317)
 ◦ When I am, as it were, completely myself, entirely alone, and of good cheer — say traveling in a carriage, or walking after a good meal, or during the night when I cannot sleep; it is on such occasions that my ideas flow best and most abundantly.

• Compare with the composer working to build (e.g.) a new version of a TV theme, on schedule, and with constraints on “acceptable style”
 ‣ this is a different kind of activity: **CREATIVE REASONING**

• Most creative acts of any size are a **mixture of both**

• Here, I focus on **spontaneous creativity** only
EXPECTATION
Expectation allows us to deal with the world
- there is too much data out there to process in real time
- we need to manage it by predicting what comes next, so we have a chance to get ahead

Expectation works in lots of domains
- vision
- movement understanding
- speech understanding
Why should it be so?

- **Key evolutionary points**
 - organisms survive better if they can learn
 - organisms survive better if they can anticipate
 - organisms survive better if they can anticipate from what they learn
 - organisms cannot be merely reactive
 - anticipation must be proactive
 - organisms must regulate cognitive resource – attention is expensive
A uniform account of cognition

• Cognition as information processing
 ‣ To promote survival
 ‣ To manage the world around an organism

• To promote cognition/information processing
 ‣ need memory
 ‣ need compression/optimisation
 ◦ to represent memories as efficiently as possible (reduce cognitive load)
 ◦ to take advantage of any structure/pattern that may be in the perceptual data and avoid repetition
 ‣ need to compare what is perceived with what is remembered, to predict

• A system (biological or computational) that can do these things has a big advantage
A uniform account of cognition

- Cognition as information processing
 - To promote survival
 - To manage the world around an organism

- To promote cognition/information processing
 - need memory
 - need compression/optimisation
 - to represent memories as efficiently as possible (reduce cognitive load)
 - to take advantage of any structure/pattern that may be in the perceptual data and avoid repetition
 - need to compare what is perceived with what is remembered, to **predict**

- A system (biological or computational) that can do these things has a big advantage
Bernard Baars (1988) proposed the **Global Workspace Theory**

- agents, generating cognitive structures, communicating via a shared workspace
- agnostic as to nature of agent-generators
- information in workspace is available to all agents and to consciousness
- agents gain access to blackboard by “recruiting” support from others
- problem: how to gain access

Avoid Chalmers’ “hard problem”: what is conscious?

- ask instead: what is it conscious of?
• Model expectation in music and language statistically
 - currently using IDyOM model (Pearce, 2005)
 - predicts human melodic expectation ($R^2=.81$; Pearce & Wiggins, 2006)
 - predicts human melodic segmentation ($F_1=.61$; Pearce, Müllensiefen & Wiggins, 2010)
 - predicts language (phoneme) segmentation ($F_1=.67$; Wiggins, 2011)

• Statistical nature means we can apply information theory (Shannon, 1948)
Two versions of Shannon's entropy measure (MacKay, 2003)

- **Information content**: estimated number of bits required to transmit a given symbol as it is received:

 \[h = -\log_2 p_s \]

 - models **unexpectedness**

- **Entropy**: expected value of the number of bits required to transmit a symbol from a given distribution:

 \[H = -\sum_i p_i \log_2 p_i \]

 - models **uncertainty**

 - \(p_s, p_i \) are probabilities of symbols; \(i \) ranges over all symbols in the distribution
Instantiating the Global Workspace

- Agent generators
 - statistical samplers predicting next in sequence from shared learned models of perceptual and other domains
 - many agents, working in massive parallel
 - at all times, the likelihood of a given prediction is proportional to the number of generators producing it
 - receive perceptual input from sensory systems
 - continually compare previous predictions with current world state
 - continually predict next world state from current matched predictions
 - sensory input does not enter memory directly
 - the expectation that matches best, or a merger of the two, is recorded
 - consider state t (current) and state $t+1$ (next)
 - at state t, we can calculate h_t, H_t, and H_{t+1} (but not h_{t+1}, because it hasn’t happened yet)
Anticipatory agent

Sensory input

uncertainty

Agent$_1$ at t

State$_{t-1}$

h_{t-1}

Agent$_1$ at $t+1$

State$_t$

h_t

Agent$_1$ at $t+1$

State$_{t+1}$

h_{t+1}

Distribution$_{1,t}$

match

select

Distribution$_{1,t+1}$

match

select

Distribution$_{1,t+1}$

Distribution$_{1,t}$

match

select

Distribution$_{1,t}$

match

select

State$_{t-1}$

h_{t-1}

State$_{t+1}$

h_{t+1}

Distribution$_{1,t}$

Distribution$_{1,t+1}$

Sample

record

unexpectedness

Time

Memory
Anticipatory agents in competition

Competitive access to Global Workspace

State t

Agent 1 at t

Agent 2 at t

Distribution 1,t

Distribution 2,t

Sensory input

Memory

Time

Sample

Record

Select

Sample

Select

Select

Select

Select

Select
Anticipatory agents in competition

Competitive access to Global Workspace

State $t+1$

h_{t+1}

match

$H_{n,1}$

select

Distribution$_1,t$

Agent$_1$ at t

Agent$_2$ at t

Distribution$_2,t$

$H_{t,2}$

sample

State t

h_t

select

Sensory input

Memory

Time

record

sample
Selecting agent outputs

- Agents produce (musical) structure representations
- Probability of structure (in learned model) increases “volume”
 - likely structures are generated more often
 - multiple identical predictions are “additive”
- Unexpectedness increases “volume”
 - information content predicts unexpectedness
- Uncertainty decreases “volume”
 - entropy reduces “volume”
Selecting agent outputs

- Agents produce (musical) structure representations
- Probability of structure (in learned model) increases “volume”
 - likely structures are generated more often
 - multiple identical predictions are “additive”
- Unexpectedness increases “volume”
 - information content predicts unexpectedness
- Uncertainty decreases “volume”
 - entropy reduces “volume”
The story so far

• Mechanism proposed to anticipate and manage events in the world

• Same mechanism can result in creativity in response to sensory input

• Relative lack of sensory input results in “free-wheeling”
 ‣ which in turn allows (apparently) spontaneous creative production
 ‣ cf. Wallas (1926) “aha” moment between incubation and inspiration
 © corresponds with entry of structure into global workspace

• All this is internal to one individual
 ‣ how might cooperative improvisation be included in this framework?
Anticipatory agents in competition

State $t+1$

select

match

Sensory input

$H_{n,1}$

select

Distribution$_{1,t}$

Agent$_1$ at t

Competitive access to Global Workspace

h_{t+1}

select

State t

h_t

select

Agent$_2$ at t

sustainable input

Distribution$_{2,t}$

$H_{t,2}$

record

Time

sample

Memory

sample

select
Anticipatory agents in cooperation

Player 1

Player 2

Compatible models of music
Shared model of piece
Anticipatory agents in cooperation

Player 1

Player 2

Established entrainment

Compatible models of music

Shared model of piece
Anticipatory agents in cooperation

Player 1

Player 2

State t

Select

Distribution $1,t$

Select

Sensory input $H^n,1$

Select

Distribution $1,t$

Select

Competitive access to Global Workspace

Established entrainment

Compatible models of music

Shared model of piece

Play

Play

Agent 1 at t

Sample

Agent 2 at t

Sample

Agent 1 at t

Sample

Agent 2 at t

Sample

Time

Player 1

Player 2
Anticipatory agents in cooperation

Player 1

State t

Sensory input $H_{n,1}$

Distribution $1,t$

Select h_{t+1}

Sample $H_{t,1}$

Agent 1 at t

Competitive access to Global Workspace

Record

Established entrainment

Agent 1

Compatible models of music

Shared model of piece

Play

Player 2

State t

Sensory input $H_{n,2}$

Distribution $2,t$

Select h_{t+1}

Sample $H_{t,2}$

Agent 2 at t

Competitive access to Global Workspace

Record

Established entrainment

Agent 2

Compatible models of music

Shared model of piece

Play

Time
Anticipatory agents in cooperation

Player 1

State s_t

Sensory input $H_{n,1}$

Distribution 1_t

Sample h_{t+1}

Agent A_{1_t}

Play

Competitive access to Global Workspace

Record

Established entrainment

Compatible models of music

Shared model of piece

Player 2

State s_t

Sensory input $H_{n,2}$

Distribution 2_t

Sample h_t

Agent A_{2_t}

Play

Competitive access to Global Workspace

Record
Consequences

- **Given**
 - perceptual mechanisms – given as discrete representations – ongoing research
 - learned enculturation – statistical mechanisms
 - musical technique (e.g. ability to hear musically, ability to play)
 - musical knowledge (e.g. chord sequences of particular songs, music “theory”)
 - mechanism for entrainment – open question (Large et al., oscillatory model?)
 - reward mechanism (why is it fun?)
 - maybe somatic responses to memory activity (Biederman & Vessel, 1996)
 - maybe emotional responses to interaction itself (cf. intuitive parentese)
 - these are mechanisms that promote societal bonding = good for survival

- ... improvisatory behaviour naturally arises from a cognitive mechanism for survival in the world
Evaluation

- Creativity is a slippery concept in humans
 - how can we evaluate the model?

- Doing this with music is in a sense easier than with language or other kinds of knowledge
 - no real-world inference necessary
 - but that doesn’t make it easier to evaluate

- **Build the beast and see what it does!**
 - does it produce novel and interesting (musical) ideas?
 - does its behaviour match human behaviours?
 - Use evaluation methods from CC
 - Ritchie’s artefact analysis
 - Colton’s FACE & IDEA formalisms, etc.
Full (long) paper on model due online in next 3 weeks: