Musical Performance As A Service

Exploring orchestra workflow, performer discovery, and music (service) composition

Chris Branton
08 June, 2012
Unintended Consequences

Ian Knight (c 1977)
Trajectory

• Grendl project
 – Collaboration of Laptop Orchestra of Louisiana (LOLs) and LSU CCT

• Enabling and supporting performance

• Consequent framing of ensemble, performance, composition
Initial challenge

• Issues with piece transitions
• Different LO compositions often require (significantly) different resources
 – distributed applications common
• Changes to venue or ensemble bring novel challenges
GRENDL

• GRid ENabled Deployment for Laptop orchestras
• Treat LO as computational grid
 – composition as job
• Simple API for Grid Applications (SAGA) distributes and executes compositions and instruments
Early questions

• How to represent (score) a composition?
• How to specify a performance?
• How to identify ensemble members and respective parts?
• How to manage and distribute all of the above?
Grid model answers

• Composition = job
• Part = collection of tasks
• Ensemble members = service and resource providers
• Distribution of tasks through service advertising and discovery
Performance Representation

• Program as primary artifact
• Ensemble (service providers)
• Other cast and crew (other services)
• Set lists (jobs)
• Other performance metadata
 – composer(s)
 – date, time, location, etc.
Ensemble

• Performers -- human or otherwise
• Instruments, middleware, other devices
• Network configuration
 – other relevant configurations (e.g. spatial layout or connection types)
• Services offered
• Can be published, advertised and discovered at “playtime”
Composition (Job)

- Score is primary artifact
- Services required
 - conventionally often described by instrument (e.g. violinist) with context assumed
- Service specifications and constraints
 - parts
- Resources and other requirements
- Workflow (arrangement, special instructions ...
Initial version

- Wrapper on SAGA C++ library
- Stateless command-line application
 - independent operations
 - static ensemble configuration
- “Push” data using SAGA
- Piloted throughout 2010 season
Results

• GRENDL worked (almost) flawlessly
 – pre-concert transfer of latest files
 – piece transitions much faster

• Some challenges remained
 – non-trivial setup & execution
 – bottlenecks transferring large packages
 – difficult to troubleshoot
Second iteration (2011)

• OSC-wrapped SAGA server with remote Java client
 – performance spec. (program) + state
 – ensemble remains largely static
• Result was improved reliability + control
• Limitations on expanding scope
 – service advertising and discovery
 – scalability (still pushing data)
Course correction

- Assumptions about operating environment shaped SAGA implementation
- Static network configuration
- Implied coupling via grid middleware

GRENDL Processing Modes

- **Transfer**
 - Run pre-transfer script on master
 - Transfer files to clients
 - Run config scripts on clients
 - Run post-transfer script on master

- **Launch**
 - Run pre-launch script on master
 - Run applications on clients
 - Run post-launch script on master

GRENDL with SAGA paralleled HPC workflow
Current version

- Primary goal of restoring music focus
- Single Java executable per machine
- DNS Service Discovery (Bonjour) to publish and discover services
- Inherited GRENDL OSC interface
- Much simpler composition spec.
- Ensemble members added and removed dynamically
Impact of grid model

• Grid implementation reinforced model of ensemble as distributed services
• Fusion of musician, instrument, playing
• Program as job specification
• Representation of score
• Relation of service composition to music composition and performance
Benefits

• Demonstrated effectiveness for performance management
 – workflow support
• Well-aligned with current system development practices
 – growing support in Web and OS domains
• Flexible and adaptable
• Platform independence (theoretically)
• Computer and human performers can be viewed similarly by the system
Research Opportunities

• Timing and service synchronization
• Representation of program, score, ensemble, ...
• Performance workflow management
• Service composition and discovery
 – constraint-based compositions
 – fractional performers | instruments
Current directions

- Configuration management, distribution, and archiving
 - representation and metadata
- Reduced overhead | learning curve
 - “pickup” ensembles"
 - individual rehearsal
- Composition support
Acknowledgements

This work is partially funded by AVATAR, the Arts, Visualization, Advanced Technologies and Research Initiative, an interdisciplinary research and education program in digital media at LSU. AVATAR is a collaboration between the CCT, the Schools of Art, Music and Mass Communication, and the Departments of Computer Science, English and Electrical & Computer Engineering.

GRENDL has been developed for the Laptop Orchestra of Louisiana (LOLs), involving researchers in the Cyberinfrastructure Development and Cultural Computing groups at the LSU Center for Computation & Technology (CCT). The LOLs is a collaborative project of the LSU School of Music and the CCT.

Technology supported by the U.S. National Science Foundation Program for Creative-IT
Questions?