
Musical Performance  
As A Service 

Exploring orchestra workflow, 
performer discovery, and music 

(service) composition 

Chris Branton 
08 June, 2012 



Unintended Consequences 

Ian Knight (c 1977) 





Trajectory 

•  Grendl project 
– Collaboration of Laptop Orchestra of 

Louisiana (LOLs) and LSU CCT 

•  Enabling and supporting performance 
•  Consequent framing of ensemble, 

performance, composition 



Initial challenge 

•  Issues with piece transitions 
•  Different LO compositions often require 

(significantly) different resources 
– distributed applications common 

•  Changes to venue or ensemble bring 
novel challenges 







GRENDL 

•  GRid ENabled Deployment for 
Laptop orchestras 

•  Treat LO as computational grid 
– composition as job 

•  Simple API for Grid Applications 
(SAGA) distributes and executes 
compositions and instruments 



Early questions 

•  How to represent (score) a 
composition? 

•  How to specify a performance? 
•  How to identify ensemble members 

and respective parts? 
•  How to manage and distribute all of 

the above? 



Grid model answers 

•  Composition = job 
•  Part = collection of tasks 
•  Ensemble members = service and 

resource providers 
•  Distribution of tasks through service 

advertising and discovery 



Performance Representation 

•  Program as primary artifact 
•  Ensemble (service providers) 
•  Other cast and crew (other services) 
•  Set lists (jobs) 
•  Other performance metadata 
– composer(s) 
– date, time, location, etc. 



Ensemble 

•  Performers -- human or otherwise 
•  Instruments, middleware, other devices 
•  Network configuration 
– other relevant configurations (e.g.  spatial 

layout or connection types) 

•  Services offered 
•  Can be published, advertised and 

discovered at “playtime” 



Composition (Job) 

•  Score is primary artifact 
•  Services required 
– conventionally often described by instrument 

(e.g. violinist) with context assumed 

•  Service specifications and constraints 
– parts 

•  Resources and other requirements 
•  Workflow (arrangement, special 

instructions …) 



Initial version 

•  Wrapper on SAGA C++ library 
•  Stateless command-line application 
–  independent operations 
– static ensemble configuration 

•  “Push” data using SAGA 
•  Piloted throughout 2010 season 



Results 

•  GRENDL worked (almost) flawlessly 
– pre-concert transfer of latest files 
– piece transitions much faster 

•  Some challenges remained 
– non-trivial setup & execution 
– bottlenecks transferring large packages 
– difficult to troubleshoot 



Second iteration (2011) 

•  OSC-wrapped SAGA server with 
remote Java client  
– performance spec. (program) + state 
– ensemble remains largely static 

•  Result was improved reliability + control 
•  Limitations on expanding scope 
– service advertising and discovery 
– scalability (still pushing data) 



Course correction 

GRENDL Processing Modes

Transfer
Run pre-transfer script on master

Transfer files to clients

Run config scripts on clients

Run post-transfer script on master

Run pre-launch script on master

Run applications on clients

Run post-launch script on master

Launch

•  Assumptions about 
operating 
environment  
shaped SAGA 
implementation 

•  Static network 
configuration 

•  Implied coupling  
via grid middleware GRENDL with SAGA  

paralleled HPC workflow 



Current version 

•  Primary goal of restoring music focus 
•  Single Java executable per machine 
•  DNS Service Discovery (Bonjour) to 

publish and discover services 
•  Inherited GRENDL OSC interface 
•  Much simpler composition spec. 
•  Ensemble members added and 

removed dynamically  



Impact of grid model 

•  Grid implementation reinforced model 
of ensemble as distributed services 

•  Fusion of musician, instrument, playing 
•  Program as job specification 
•  Representation of score 
•  Relation of service composition to 

music composition and performance 



Benefits 

•  Demonstrated effectiveness for 
performance management  
– workflow support 

•  Well-aligned with current system 
development practices 
– growing support in Web and OS domains 

•  Flexible and adaptable 
•  Platform independence (theoretically) 
•  Computer and human performers can 

be viewed similarly by the system 



Research Opportunities 

•  Timing and service synchronization 
•  Representation of program, score, 

ensemble, …  
•  Performance workflow management 
•  Service composition and discovery 
– constraint-based compositions 
–  fractional performers | instruments 



Current directions 

•  Configuration management, 
distribution, and archiving 
–  representation and metadata 

•  Reduced overhead | learning curve  
– “pickup” ensembles” 
–   individual rehearsal 

•  Composition support 



Acknowledgements 
•  This work is partially funded by AVATAR, the Arts, Visualization, 

Advanced Technologies and Research Initiative, an 
interdisciplinary research and education program in digital 
media at LSU. AVATAR is a collaboration between the CCT, 
the Schools of Art, Music and Mass Communication, and the 
Departments of Computer Science, English and Electrical & 
Computer Engineering. 

•  GRENDL has been developed for the Laptop Orchestra of 
Louisiana (LOLs), involving researchers in the 
Cyberinfrastructure Development and Cultural Computing 
groups at the LSU Center for Computation & Technology 
(CCT). The LOLs is a collaborative project of the LSU School 
of Music and the CCT.  

•  Technology supported by the U.S. National Science 
Foundation Program for Creative-IT 



Questions? 


