
TEST ORACLES
Formal Definitions and Classifications

Shin Yoo & Mark Harman(UCL)
Muzammil Shahbaz & Phil McMinn(University of Sheffield)



OVERVIEW

• Formal Definitions

•Oracle Literature Timeline & Classification



FORMAL DEFINITIONS

• Few attempts to form an universal framework

• Recent work on formalising testing process (Staats et al. 2011) 
but with different focus



Of course, one might hope that the software–under–test has been developed with
respect to excellent design–for–test principles, so that there might be a detailed, and
possibly formal, specification of intended behaviour. One might also hope that the code
itself contains pre– and post– conditions that implement well-understood contract–
driven development approaches [44]. In these situations, the Oracle Cost problem is
ameliorated by the presence of an automatable oracle to which a testing tool can refer
to check outputs, free from the need for costly human intervention.

Where there is no full specification of the properties of the system under test, one
may hope that it is possible to construct some form of partial oracle, that is able to
answer oracle questions for some inputs, relying on other means to answer the oracle
question for others. In the literature, such partial oracles are often achieved using a
form of metamorphic testing in which testing seeks to exercise known relationships
between input and behaviour, where these can be established.

However, for many systems and much of testing as currently practiced in industry,
the tester has the luxury of neither formal specification nor assertions, nor even auto-
mated partial oracles. The tester must therefore face the potentially daunting task of
manually checking the system’s behaviour for all test cases generated. In such cases,
it is essential that automated software testing approaches address the Human Oracle
Cost problem [31,43].

In order to achieve greater test automation and wider uptake of automated testing,
we therefore need a concerted e↵ort to find ways to address the oracle problem and to
integrate automated and partially automated oracle solutions into test data generation
techniques. This paper seeks to help address this challenge by providing a compre-
hensive review and analysis of the existing literature of the oracle problem. Hitherto,
there has been no such review; research into the oracle problem is still undertaken in a
fragmented community of researchers and practitioners. This paper seeks to overcome
this by providing the first comprehensive analysis and review of work on the oracle
problem on software testing.

2 Definitions

This section sets out some foundational definitions to establish a common lingua franca
in which to examine the literature on Oracles. These definitions are formalised to avoid
ambiguity, but the reader should find that it is also possible to read the paper using
only the informal descriptions that accompany these formal definitions.

Testing begins with a System Under Test (SUT), which has input and output. We
define input and output as coming from arbitrary sets, which form a kind of alphabet for
the SUT. However, this definition of an input and output alphabet is merely intended
to make concrete the set of test inputs that could be provided to the SUT and the set
of behaviours (as most widely construed), which we term ‘the output’ for want of a
better term.

Definition 1 (Alphabet) The input to the program under test will be considered to
be drawn from a set I, while the output will be drawn from a set O.

We do not seek to constrain our discussion to those systems that produce a sequence

2



of output values, but consider the output set O to denote all the behaviours of the SUT
that are observable (including functional and so-called non-functional properties that
may be interesting to a tester). Similarly, we constrain inputs to be neither a sequence
nor a vector of values, but consider the set I to denote any scenario that can be
established by a tester in which to executed the SUT.

For example, inputs can include the configuration and platform settings, database
table contents, device states, typed values at a input device, inputs on a channel from
another system, sensor inputs and so on. Outputs can include anything that can be
observed and ascribed a meaning significant to the purpose of testing, including values
that appear on an output device, database state, temporal properties of the execution,
heat dissipated during execution, power consumed and any other measurable attributes
of the execution of the SUT.

A test case is made up of the input to the SUT and the expected output. Of course,
the SUT may not be deterministic, so the expected output is defined to be a set in
the definition below. For a deterministic system this set will be singleton. The system
under test may also fail to terminate, in which case there may be no output. We prefer
to consider non–termination as a particular kind of output value (e.g. ? as used in
denotational semantics [45,58]), rather than treating this as some form of special case
by, for example, allowing the output set to be empty1.

Definition 2 (Test Case) A test case is a pair (i, o) in I ⇥ 2O such that o is non-
empty and is singleton in the case that the system, is deterministic for input i .

A test case should be distinguished from a test instance. A test case defines the ac-
ceptable behaviour for an given input, while a test instance records the output observed
for a given input when the SUT is executed on that input.

Definition 3 (Test Instance) A test instance is a element of the set I ⇥O

A test case establishes the set of acceptable output behaviours (drawn from O)
for a corresponding input scenario (in I). For some forms of test cases, the acceptable
output behaviours are either defined (e.g., metamorphic testing) or inferred (e.g., spec-
ification mining) from other test instances (drawn from P(O)). One way to define an
oracle would be a set of test cases, thereby establishing a set of acceptable behavioural
relationships.

Equivalently, we prefer to define the oracle as a predicate, to allow for subsequent
generalisation to cater more smoothly for probabilistic oracles. We first define a ‘Defi-
nite Oracle’, and then relax this definition to ‘Probabilistic Oracle’.

Definition 4 (Definite Oracle) A Definite Oracle is a function from test instances
to {0, 1}. That is, a definite oracle is an element of the set I ⇥O ⇥ 2O ! {0, 1}.

A definite oracle responds with either a 1 or a 0 indicating that the test instance
is acceptable or unacceptable respectively, for each domain element in I ⇥O ⇥ 2O for
which it is defined. We do not require that a definite oracle be a total function, so it

1Of course non–termination can never be observed directly, but we need to consider it as a potential
member of the set of outputs in order to properly define the ground truth (Definition 7).

3

of output values, but consider the output set O to denote all the behaviours of the SUT
that are observable (including functional and so-called non-functional properties that
may be interesting to a tester). Similarly, we constrain inputs to be neither a sequence
nor a vector of values, but consider the set I to denote any scenario that can be
established by a tester in which to executed the SUT.

For example, inputs can include the configuration and platform settings, database
table contents, device states, typed values at a input device, inputs on a channel from
another system, sensor inputs and so on. Outputs can include anything that can be
observed and ascribed a meaning significant to the purpose of testing, including values
that appear on an output device, database state, temporal properties of the execution,
heat dissipated during execution, power consumed and any other measurable attributes
of the execution of the SUT.

A test case is made up of the input to the SUT and the expected output. Of course,
the SUT may not be deterministic, so the expected output is defined to be a set in
the definition below. For a deterministic system this set will be singleton. The system
under test may also fail to terminate, in which case there may be no output. We prefer
to consider non–termination as a particular kind of output value (e.g. ? as used in
denotational semantics [45,58]), rather than treating this as some form of special case
by, for example, allowing the output set to be empty1.

Definition 2 (Test Case) A test case is a pair (i, o) in I ⇥ 2O such that o is non-
empty and is singleton in the case that the system, is deterministic for input i .

A test case should be distinguished from a test instance. A test case defines the ac-
ceptable behaviour for an given input, while a test instance records the output observed
for a given input when the SUT is executed on that input.

Definition 3 (Test Instance) A test instance is a element of the set I ⇥O

A test case establishes the set of acceptable output behaviours (drawn from O)
for a corresponding input scenario (in I). For some forms of test cases, the acceptable
output behaviours are either defined (e.g., metamorphic testing) or inferred (e.g., spec-
ification mining) from other test instances (drawn from P(O)). One way to define an
oracle would be a set of test cases, thereby establishing a set of acceptable behavioural
relationships.

Equivalently, we prefer to define the oracle as a predicate, to allow for subsequent
generalisation to cater more smoothly for probabilistic oracles. We first define a ‘Defi-
nite Oracle’, and then relax this definition to ‘Probabilistic Oracle’.

Definition 4 (Definite Oracle) A Definite Oracle is a function from test instances
to {0, 1}. That is, a definite oracle is an element of the set I ⇥O ⇥ 2O ! {0, 1}.

A definite oracle responds with either a 1 or a 0 indicating that the test instance
is acceptable or unacceptable respectively, for each domain element in I ⇥O ⇥ 2O for
which it is defined. We do not require that a definite oracle be a total function, so it

1Of course non–termination can never be observed directly, but we need to consider it as a potential
member of the set of outputs in order to properly define the ground truth (Definition 7).

3



VERSION 0.1

•Define oracle as a set of test cases that establishes acceptable 
behavioural relationship between input and output

I ⇥O ! {0, 1}



VERSION 0.2

•We want to cater for probabilistic decision on acceptance

I ⇥O ! [0, 1]



Exact 0.54% 7.58%

Algorithmic Methodologies for Ultra-efficient Inexact Architectures for Sustaining Technology Scaling
Lingamneni et al., ACM Computing Frontiers 2012

INEXACTNESS



VERSION 0.3

•We want to cater for metamorphic relations

• Acceptable behaviour is defined as a relation to other test 
instances

I ⇥O ⇥ 2I⇥O ! [0, 1]



METAMORPHIC 
RELATIONSHIP

• If certain relation holds between two inputs, you expect a 
specific relation to hold between corresponding outputs

• Example: 

• Traditional examples focus on two instances, but it can be 
generalised to n instances

• Example: linearity between input/output requires 3 instances

x

0 = ⇡ � x ! sinx0 = sinx



VERSION 0.3

•We want to cater for metamorphic relations

• Acceptable behaviour is defined as a relation to other test 
instances

I ⇥O ⇥ 2I⇥O ! [0, 1]



VERSION 0.4

•We want to cater for inferred specification/regression suites

• Acceptable behaviour is defined as a relation to other test 
instances

I ⇥O ⇥ 2I⇥O ! [0, 1]



of output values, but consider the output set O to denote all the behaviours of the SUT
that are observable (including functional and so-called non-functional properties that
may be interesting to a tester). Similarly, we constrain inputs to be neither a sequence
nor a vector of values, but consider the set I to denote any scenario that can be
established by a tester in which to executed the SUT.

For example, inputs can include the configuration and platform settings, database
table contents, device states, typed values at a input device, inputs on a channel from
another system, sensor inputs and so on. Outputs can include anything that can be
observed and ascribed a meaning significant to the purpose of testing, including values
that appear on an output device, database state, temporal properties of the execution,
heat dissipated during execution, power consumed and any other measurable attributes
of the execution of the SUT.

A test case is made up of the input to the SUT and the expected output. Of course,
the SUT may not be deterministic, so the expected output is defined to be a set in
the definition below. For a deterministic system this set will be singleton. The system
under test may also fail to terminate, in which case there may be no output. We prefer
to consider non–termination as a particular kind of output value (e.g. ? as used in
denotational semantics [45,58]), rather than treating this as some form of special case
by, for example, allowing the output set to be empty1.

Definition 2 (Test Case) A test case is a pair (i, o) in I ⇥ 2O such that o is non-
empty and is singleton in the case that the system, is deterministic for input i .

A test case should be distinguished from a test instance. A test case defines the ac-
ceptable behaviour for an given input, while a test instance records the output observed
for a given input when the SUT is executed on that input.

Definition 3 (Test Instance) A test instance is a element of the set I ⇥O

A test case establishes the set of acceptable output behaviours (drawn from O)
for a corresponding input scenario (in I). For some forms of test cases, the acceptable
output behaviours are either defined (e.g., metamorphic testing) or inferred (e.g., spec-
ification mining) from other test instances (drawn from P(O)). One way to define an
oracle would be a set of test cases, thereby establishing a set of acceptable behavioural
relationships.

Equivalently, we prefer to define the oracle as a predicate, to allow for subsequent
generalisation to cater more smoothly for probabilistic oracles. We first define a ‘Defi-
nite Oracle’, and then relax this definition to ‘Probabilistic Oracle’.

Definition 4 (Definite Oracle) A Definite Oracle is a function from test instances
to {0, 1}. That is, a definite oracle is an element of the set I ⇥O ⇥ 2O ! {0, 1}.

A definite oracle responds with either a 1 or a 0 indicating that the test instance
is acceptable or unacceptable respectively, for each domain element in I ⇥O ⇥ 2O for
which it is defined. We do not require that a definite oracle be a total function, so it

1Of course non–termination can never be observed directly, but we need to consider it as a potential
member of the set of outputs in order to properly define the ground truth (Definition 7).

3

may be undefined for some elements of I⇥O⇥2O. However, for a definite oracle, when
it is defined, a test instance is either acceptable or it is not; there is no other possibility.
It is also useful to generalise this definition to allow for probabilistic oracles:

Definition 5 (Probabilistic Oracle) A Probabilistic Oracle is a function from test
instances to [0, 1]. That is, a probabilistic oracle is an element of the set I⇥O⇥2I⇥O !
[0, 1].

A probabilistic oracle returns a real number in the closed interval [0, 1], denoting a
less precise response than a definite oracle. As with definite oracles, we do not require
a probabilistic oracle to be a total function. A probabilistic oracle can be used to
model the case where the oracle is only able to o↵er a probability that the test case is
acceptable, or for other situations where some degree of imprecision is to be tolerated
in the oracle’s response.

Since a definite oracle is merely a special case of a probabilistic oracle, we shall use
the term oracle, hereinafter, to refer to either definite or probabilistic oracles where
the terminology applies to both.

We are now in a position to define soundness, completeness and correctness of
oracles, which we do for the general case of probabilistic oracles, such that the special
case of definite oracles becomes merely a special case:

Definition 6 (Completeness) An Oracle is compete if it is a total function.

In order to define soundness of an oracle we need to define a concept of the ‘ground
truth’, G. The ground truth is another form of oracle, a conceptual oracle, that always
gives the ‘right answer’. Of course, it cannot be known in all but the most trivial cases,
but it is a useful definition that establishes the ways in which oracles might behave.

Definition 7 (Ground Truth) The Ground Truth, G is a definite oracle.

We can now define soundness of an oracle with respect to the Ground Truth, G.

Definition 8 (Soundness) A Probabilistic Oracle, PO is sound i↵

PO(i, o) 2
⇢

[0, 0.5) when G(i, o) = 0
(0.5, 1] when G(i, o) = 1

Notice that the constant oracle �(i, o). 12 is vacuously sound (but o↵ers no informa-
tion). Also, notice that Definition 8 above, specialises by instantiation to the case of a
definite oracle, such that a definite oracle is sound i↵ DO ✓ G.

Finally, we define total partial correctness, in the usual way:

Definition 9 (Correctness) An oracle is partially correct i↵ it is sound. An oracle
is totally correct i↵ it is sound and complete.

Observe that an arbitrary oracle AO is totally correct i↵ AO = G. That is a totally
correct oracle is indistinguishable from the ground truth. It is unlikely that such a
totally correct oracle exists in practice.

4



may be undefined for some elements of I⇥O⇥2O. However, for a definite oracle, when
it is defined, a test instance is either acceptable or it is not; there is no other possibility.
It is also useful to generalise this definition to allow for probabilistic oracles:

Definition 5 (Probabilistic Oracle) A Probabilistic Oracle is a function from test
instances to [0, 1]. That is, a probabilistic oracle is an element of the set I⇥O⇥2I⇥O !
[0, 1].

A probabilistic oracle returns a real number in the closed interval [0, 1], denoting a
less precise response than a definite oracle. As with definite oracles, we do not require
a probabilistic oracle to be a total function. A probabilistic oracle can be used to
model the case where the oracle is only able to o↵er a probability that the test case is
acceptable, or for other situations where some degree of imprecision is to be tolerated
in the oracle’s response.

Since a definite oracle is merely a special case of a probabilistic oracle, we shall use
the term oracle, hereinafter, to refer to either definite or probabilistic oracles where
the terminology applies to both.

We are now in a position to define soundness, completeness and correctness of
oracles, which we do for the general case of probabilistic oracles, such that the special
case of definite oracles becomes merely a special case:

Definition 6 (Completeness) An Oracle is compete if it is a total function.

In order to define soundness of an oracle we need to define a concept of the ‘ground
truth’, G. The ground truth is another form of oracle, a conceptual oracle, that always
gives the ‘right answer’. Of course, it cannot be known in all but the most trivial cases,
but it is a useful definition that establishes the ways in which oracles might behave.

Definition 7 (Ground Truth) The Ground Truth, G is a definite oracle.

We can now define soundness of an oracle with respect to the Ground Truth, G.

Definition 8 (Soundness) A Probabilistic Oracle, PO is sound i↵

PO(i, o) 2
⇢

[0, 0.5) when G(i, o) = 0
(0.5, 1] when G(i, o) = 1

Notice that the constant oracle �(i, o). 12 is vacuously sound (but o↵ers no informa-
tion). Also, notice that Definition 8 above, specialises by instantiation to the case of a
definite oracle, such that a definite oracle is sound i↵ DO ✓ G.

Finally, we define total partial correctness, in the usual way:

Definition 9 (Correctness) An oracle is partially correct i↵ it is sound. An oracle
is totally correct i↵ it is sound and complete.

Observe that an arbitrary oracle AO is totally correct i↵ AO = G. That is a totally
correct oracle is indistinguishable from the ground truth. It is unlikely that such a
totally correct oracle exists in practice.

4



may be undefined for some elements of I⇥O⇥2O. However, for a definite oracle, when
it is defined, a test instance is either acceptable or it is not; there is no other possibility.
It is also useful to generalise this definition to allow for probabilistic oracles:

Definition 5 (Probabilistic Oracle) A Probabilistic Oracle is a function from test
instances to [0, 1]. That is, a probabilistic oracle is an element of the set I⇥O⇥2I⇥O !
[0, 1].

A probabilistic oracle returns a real number in the closed interval [0, 1], denoting a
less precise response than a definite oracle. As with definite oracles, we do not require
a probabilistic oracle to be a total function. A probabilistic oracle can be used to
model the case where the oracle is only able to o↵er a probability that the test case is
acceptable, or for other situations where some degree of imprecision is to be tolerated
in the oracle’s response.

Since a definite oracle is merely a special case of a probabilistic oracle, we shall use
the term oracle, hereinafter, to refer to either definite or probabilistic oracles where
the terminology applies to both.

We are now in a position to define soundness, completeness and correctness of
oracles, which we do for the general case of probabilistic oracles, such that the special
case of definite oracles becomes merely a special case:

Definition 6 (Completeness) An Oracle is compete if it is a total function.

In order to define soundness of an oracle we need to define a concept of the ‘ground
truth’, G. The ground truth is another form of oracle, a conceptual oracle, that always
gives the ‘right answer’. Of course, it cannot be known in all but the most trivial cases,
but it is a useful definition that establishes the ways in which oracles might behave.

Definition 7 (Ground Truth) The Ground Truth, G is a definite oracle.

We can now define soundness of an oracle with respect to the Ground Truth, G.

Definition 8 (Soundness) A Probabilistic Oracle, PO is sound i↵

PO(i, o) 2
⇢

[0, 0.5) when G(i, o) = 0
(0.5, 1] when G(i, o) = 1

Notice that the constant oracle �(i, o). 12 is vacuously sound (but o↵ers no informa-
tion). Also, notice that Definition 8 above, specialises by instantiation to the case of a
definite oracle, such that a definite oracle is sound i↵ DO ✓ G.

Finally, we define total partial correctness, in the usual way:

Definition 9 (Correctness) An oracle is partially correct i↵ it is sound. An oracle
is totally correct i↵ it is sound and complete.

Observe that an arbitrary oracle AO is totally correct i↵ AO = G. That is a totally
correct oracle is indistinguishable from the ground truth. It is unlikely that such a
totally correct oracle exists in practice.

4



may be undefined for some elements of I⇥O⇥2O. However, for a definite oracle, when
it is defined, a test instance is either acceptable or it is not; there is no other possibility.
It is also useful to generalise this definition to allow for probabilistic oracles:

Definition 5 (Probabilistic Oracle) A Probabilistic Oracle is a function from test
instances to [0, 1]. That is, a probabilistic oracle is an element of the set I⇥O⇥2I⇥O !
[0, 1].

A probabilistic oracle returns a real number in the closed interval [0, 1], denoting a
less precise response than a definite oracle. As with definite oracles, we do not require
a probabilistic oracle to be a total function. A probabilistic oracle can be used to
model the case where the oracle is only able to o↵er a probability that the test case is
acceptable, or for other situations where some degree of imprecision is to be tolerated
in the oracle’s response.

Since a definite oracle is merely a special case of a probabilistic oracle, we shall use
the term oracle, hereinafter, to refer to either definite or probabilistic oracles where
the terminology applies to both.

We are now in a position to define soundness, completeness and correctness of
oracles, which we do for the general case of probabilistic oracles, such that the special
case of definite oracles becomes merely a special case:

Definition 6 (Completeness) An Oracle is compete if it is a total function.

In order to define soundness of an oracle we need to define a concept of the ‘ground
truth’, G. The ground truth is another form of oracle, a conceptual oracle, that always
gives the ‘right answer’. Of course, it cannot be known in all but the most trivial cases,
but it is a useful definition that establishes the ways in which oracles might behave.

Definition 7 (Ground Truth) The Ground Truth, G is a definite oracle.

We can now define soundness of an oracle with respect to the Ground Truth, G.

Definition 8 (Soundness) A Probabilistic Oracle, PO is sound i↵

PO(i, o) 2
⇢

[0, 0.5) when G(i, o) = 0
(0.5, 1] when G(i, o) = 1

Notice that the constant oracle �(i, o). 12 is vacuously sound (but o↵ers no informa-
tion). Also, notice that Definition 8 above, specialises by instantiation to the case of a
definite oracle, such that a definite oracle is sound i↵ DO ✓ G.

Finally, we define total partial correctness, in the usual way:

Definition 9 (Correctness) An oracle is partially correct i↵ it is sound. An oracle
is totally correct i↵ it is sound and complete.

Observe that an arbitrary oracle AO is totally correct i↵ AO = G. That is a totally
correct oracle is indistinguishable from the ground truth. It is unlikely that such a
totally correct oracle exists in practice.

4



Classification of Oracles 
in the literature review

• Origin:

• “test oracle” coined by W. E. Howden (1978) 

• “a program specification, table of examples, or the programmer’s 
knowledge on how the program should operate”
(Howden and Eichhorst, Tutorial: Software Testing and Validation Techniques, 1978) 

• Classification:

• Specified Oracles

• Derived Oracles

• Implicit Oracles

• No Oracles



Specified Oracles

specification based assertions / 
design-by-contracts

model based
(B, Z, VDM etc.)

transition based
(FSM, UML, Statecharts etc.)

algebraic 
specification

languages / formalisms

1980 1985 1990 1995 2000 2005 2010

M
od

el
 C

he
ck

in
g

D
es

ig
n-

by
-

C
on

tr
ac

t

A
N

N
A

 /
 L

A
R

C
H

SD
L

V
D

M
M

SC Z

Te
m

po
ra

l L
og

ic

IO
C

O
 T

he
or

y

Sp
ec

. L
an

gu
ag

es

FS
M

O
bj

ec
t-

Z

U
M

L
H

 S
ta

te
ch

ar
ts

A
SM

L
A

llo
y

O
C

L

LE
TO

R
ES

O
LV

E

oracles that are formally specified

JM
L

A
lg

eb
. S

pe
c.



Derived Oracles

1980 1985 1990 1995 2000 2005 2010

Ps
eu

do
-O

ra
cl

e

N
-V

er
si

on
s

Pa
rt

ia
l O

ra
cl

e

Lo
g 

Fi
le

 A
na

ly
si

s

M
et

am
or

ph
ic

 T
es

ts

C
od

e 
C

om
m

en
ts

oracles that can be derived from 
the given artefacts

M
ut

an
t 

ba
se

d

In
fe

re
nc

e

Se
m

i-f
or

m
al

 d
oc

s

documentations 
(source code, comments, 

APIs, specs, ...)

system executions
(traces, log files, invariants, ...)

existing knowledge 
(partial / pseudo oracles, 

regression, ...)

A
PI

 D
oc

s

R
eg

re
ss

io
n 

Te
st

in
g

in
va

ri
an

t 
de

te
ct

io
n



Implicit Oracles

pre-1980 1985 1990 1995 2000 2005 2010

A
no

m
al

y 
de

te
ct

io
n

oracles which do not require specification

Sp
ec

ifi
c 

pr
ob

le
m

s

anomalies
(deadlock, livelock)

exceptions 
(crash, ...)

JC
ra

sh
er

errors
(divide-by-zero, memory leaks, ...)

M
od

el
 C

he
ck

in
g

D
ea

dl
oc

k/
 L

iv
el

oc
k



No Oracles
no way of automatic validation!!!

1980 1985 1990 1995 2000 2005 2010

U
sa

ge
 M

in
in

g

R
ea

lis
tic

 T
es

t 
D

at
a

Te
st

 S
iz

e 
R

ed
uc

tio
n

M
ac

hi
ne

 L
ea

rn
in

g



http://recost.group.shef.ac.uk

http://recost.group.shef.ac.uk
http://recost.group.shef.ac.uk

