Mining Anomaly Detectors

Paolo Tonella

Software Engineering Research Unit
Fondazione Bruno Kessler
Trento, Italy
http://se.fbk.eu/tonella
Outline

• Role and classification of (mined) oracles
• Oracle mining techniques
• Empirical validation of mined oracles
• Future research directions
Role of oracles

For a given program P, what combination of tests T and oracle O achieves the highest fault revealing level?

Mutation testing & testability

Mutation adequacy (revised for any arbitrary o):

$$\text{Mut}_M(p \times s \times TS \times o) \Rightarrow \forall m \in M, \exists t \in TS: \neg o(t, m)$$

Effectiveness of mutation testing depends on the power of o.

Testability of program location loc is defined as the probability that the system fails if location loc is faulty.

Propagation probability (revised): probability that a perturbed value of a at location loc affects a variable used by oracle o.

Testability of a program depends also on the oracle. Low testability locations can be made more testable by using a more powerful oracle.
Oracle comparison

Oracle power \((o_1 \geq_{TS} o_2)\): \(\forall t \in TS, o_1(t, p) \Rightarrow o_2(t, p)\)

Oracle power is a partial order relation (not all pairs of oracles satisfy the oracle power relation in either direction), hence there are un-comparable oracles according to power.

Probabilistic better \((o_1 PB_{TS} o_2)\):
For a randomly selected \(t \in TS\): \(P[o_1(t, p) = F] \geq P[o_2(t, p) = F]\)

Probabilistic better is a total order relation. Probabilistic better is weaker than (subsumed by) the oracle power relation.
Classes of oracles

Complete oracle: \(corr(t, p, s) \Rightarrow o(t, p) \)

- Faults revealed by \(o \) are real faults; pass runs may miss a fault.

Sound oracle: \(o(t, p) \Rightarrow corr(t, p, s) \)

- Oracle proves correctness; no fault is missed.

Perfect oracle: \(o(t, p) \iff corr(t, p, s) \)

corr\((t, p, s)\): spec \(s \) holds for \(p \) when \(t \) is run.

1. Unsound/complete [FN ≥ 0; FP = 0]
 - Pre/post-conditions; invariants; assertions

2. Unsound/incomplete [FN ≥ 0; FP ≥ 0]
 - Anomaly detectors (oracle/spec mining/learning)
Mining oracles

1. Mining finite state machines
2. Mining temporal properties / association rules
3. Mining data invariants

Common assumption [well-enough debugged program]: during mining (training) only or mostly correct program behaviors are observed.

INPUT: static traces (paths) or dynamic traces (logs).
OUTPUT: oracles/specifications, that can be checked dynamically or statically (e.g., through model checking).
Mining finite state machines

Dynamic traces (execution logs)

FSM inference
State abstraction

Execution logs

ADABU [Dallmeier et al.; WODA 2006]

```
[in=In@6f3321a3,out=Out@5d0385c1] println
[in=In@6f3321a3,out=Out@5d0385c1] Formatter
[in=In@6f3321a3,out=Out@5d0385c1] close
[in=null,out=Out@5d0385c1] println

[in=In@4a3922f3,out=Out@5f0476d2] println
[in=In@4a3922f3,out=Out@5f0476d2] Formatter
[in=In@4a3922f3,out=Out@5f0476d2] format
[in=In@4a3922f3,out=Out@5f0476d2] close
[in=null,out=Out@5f0476d2] println

[in=In@1b25672c,out=Out@34ab4411] println
[in=In@1b25672c,out=Out@34ab4411] Formatter
[in=In@1b25672c,out=Out@34ab4411] format
[in=In@1b25672c,out=Out@34ab4411] format
[in=In@1b25672c,out=Out@34ab4411] close
[in=null,out=Out@34ab4411] println
```
Event sequence abstraction

<table>
<thead>
<tr>
<th>Execution logs</th>
<th>kTail [Biermann & Feldman; Trans Comp 1972]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KLFA [Mariani & Pastore; ISSRE 2008]</td>
</tr>
<tr>
<td></td>
<td>Synoptic [Beschastnikh et al; FSE 2011]</td>
</tr>
<tr>
<td>[Ammons et al.; POPL 2002]</td>
<td></td>
</tr>
<tr>
<td>[Whaley et al.; ISSTA 2002]</td>
<td></td>
</tr>
</tbody>
</table>

Based on **grammar inference**, usually under the constraint that: no negative example is available.
Based on a sample of strings that belong to a language L, we want to build a regular grammar whose accepted language is as close as possible to L.

K-tail principle:
Two states are merged (matched) if they have the same k-tails.
Active learning

LearnLib [Raffelt et al.; STTT 2009]
Mining temporal properties

Micro-pattern templates:
Sequencing: ab
Loop begin: ab^+
Loop end: a^+b
Pre-condition: ab?
Post-condition: $a?b$
Generalized pre-cond: a^+b^*
Generalized post-cond: a^*b^+
Association rule: $(ab \mid ba)$
General assoc rule: $(a^+b^+ \mid b^+a^+)$

IsEnforcing(sat: int, fail: int) →
{ENFORCE, LEARN, DEAD}

OCD [Gabel & Su; ICSE 2010]

Perracotta [Yang et al.; ICSE 2006]

Alternation rule:
$(a \ b)^*$
E.g.: lock/unlock

Example diagram:

\[a \quad b \]
Association rule mining

Itemset database:
\[D = \{\{a, b, c, d, e\}, \{a, b, d, e, f\}, \{a, b, d, g\}, \{a, c, h, i\}\} \]

Support of itemsets: \(\text{support}(\{a, b, d\}) = 3 \)

Frequent itemsets (support > 2):
\[F = \{\{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\} \]

Association rules and **confidence** for frequent itemset \{a, b, d\}:
\[c(A \Rightarrow B) = P[B \mid A] = \frac{\text{support}(A \cap B)}{\text{support}(A)} \]
\{a\} \Rightarrow \{b, d\} \quad c = \frac{3}{4} = 75\%
\{a, b\} \Rightarrow \{d\} \quad c = 100\%
\{b\} \Rightarrow \{a, d\} \quad c = 100\%

DynaMine:
\(a \Rightarrow b \)
Resorts to mining software revisions (co-added method calls) to find rule instances.

DynaMine [Livshits & Zimmermann; FSE 2005]
[Thummalapenta & Xie; ICSE 2009]
[Weimer & Necula; TACAS 2005]
Mining data invariants

Invariant templates:

- $x == c$
- $a <= x <= b$
- $x = a \cdot y + b \cdot z + c$
- $x = \text{abs}(y)$
- $x = \text{max}(y, z)$
- $x < y$
- $x == y$, $x + y == c$, $x - y == c$
- $\text{sorted}(x[])$
- $\text{subsequence}(x[], y[])$
- $c \text{ in } x[]$, $y \text{ in } x[]$
- $\text{strcmp}(x, y) < 0$

Daikon [Ernst et al.; ICSE 1999]

Dynamically discovered invariants are reported if the probability for them to be coincidental is $< \text{confidence threshold (e.g., prob}(N_{\text{occur}}) < 0.01)$.

Diduce [Hangal & Lam; ICSE 2002]
Empirical validation

Mined oracles are **unsound** (FN ≥ 0) and **incomplete** (FP ≥ 0). Are they useful in practice?

Key research questions:

1. **Missed faults** (FN): how many faults are not exposed by the mined oracle?
2. **False alarms** (FP): how many false alarms are raised by the mined oracle?
3. **Fault characterization** (FC): is there a particular class of faults that is specifically addressed by the mined oracle? How relevant is such fault class?
Empirical studies

<table>
<thead>
<tr>
<th>Oracle mining tool</th>
<th>FN</th>
<th>FP</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADABU [WODA 2006]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kTail [Trans Comp 1972]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLFA [ISSRE 2008]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synoptic [FSE 2011]</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>LearnLib [STTT 2009]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCD [ICSE 2010]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perracotta [ICSE 2007]</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>DynaMine [FSE 2005]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daikon [ICSE 1999]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diduce [ICSE 2002]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most experimental validations focus on the accuracy of the mined models/specs and conduct in-depth analysis of few sample anomalies, without any attempt of a systematic evaluation.
Future work

Solid, empirical validation of mined oracles:
- Experimental framework
- Benchmark (programs, test cases, traces, faults, ...)
- Key research questions
- Metrics
- Comparative evaluations
- Characterization by fault class

We (probably) do not need more oracle mining techniques; we (definitely) need to better understand and compare the effectiveness of existing techniques.