
Mining Anomaly Detectors

Paolo Tonella

Software Engineering Research Unit

Fondazione Bruno Kessler

Trento, Italy

http://se.fbk.eu/tonella

Outline

• Role and classification of (mined) oracles
• Oracle mining techniques
• Empirical validation of mined oracles
• Future research directions

Role of oracles

M. Staats, M. W. Whalen and M. P. E. Heimdahl, Programs, Tests,
and Oracles: The Foundations of Testing Revisited. ICSE 2011.

P

O T

S

P attempts to
implement S

Structure of P may be used to define
T; Semantics of P determines
propagation of errors

S may be used
to define T

Effectiveness of testing depends on O; T may influence which
variables to consider in O

O approximates S

Observability of P
limits information

available in O

For a given program P, what combination of tests T and oracle O
achieves the highest fault revealing level?

Mutation testing & testability
Mutation adequacy (revised for any arbitrary o):
𝑀𝑢𝑡𝑀 𝑝 × 𝑠 × 𝑇𝑆 × 𝑜 ⇒ ∀𝑚 ∈ 𝑀, ∃𝑡 ∈ 𝑇𝑆: ¬𝑜 𝑡, 𝑚

Effectiveness of mutation testing depends on the power of o.

Testability of program location loc is defined as the probability
that the system fails if location loc is faulty.

Propagation probability (revised): probability that a perturbed
value of a at location loc affects a variable used by oracle o.
Testability of a program depends also on the oracle.
Low testability locations can be made more testable by using a
more powerful oracle.

Oracle comparison

Oracle power (𝑜1≥𝑇𝑆 𝑜2): ∀𝑡 ∈ 𝑇𝑆, 𝑜1 𝑡, 𝑝 ⇒ 𝑜2 𝑡, 𝑝

Oracle power is a partial order relation (not all pairs of oracles
satisfy the oracle power relation in either direction), hence there
are un-comparable oracles according to power.

Probabilistic better (𝑜1 𝑃𝐵𝑇𝑆 𝑜2):
For a randomly selected 𝑡 ∈ 𝑇𝑆: 𝑃[𝑜1 𝑡, 𝑝 = 𝐹] ≥ 𝑃[𝑜2 𝑡, 𝑝 = 𝐹]

Probabilistic better is a total order relation.
Probabilistic better is weaker than (subsumed by) the oracle
power relation.

Classes of oracles

corr(t, p, s): spec s holds for p when t is run.

Complete oracle: 𝑐𝑜𝑟𝑟 𝑡, 𝑝, 𝑠 ⇒ 𝑜(𝑡, 𝑝)

• Faults revealed by o are real faults; pass runs may miss a fault.

Sound oracle: 𝑜 𝑡, 𝑝 ⇒ 𝑐𝑜𝑟𝑟(𝑡, 𝑝, 𝑠)

• Oracle proves correctness; no fault is missed.

Perfect oracle: 𝑜 𝑡, 𝑝 ⟺ 𝑐𝑜𝑟𝑟(𝑡, 𝑝, 𝑠)

1. Unsound/complete [FN ≥ 0; FP = 0]
• Pre/post-conditions; invariants; assertions

2. Unsound/incomplete [FN ≥ 0; FP ≥ 0]
• Anomaly detectors (oracle/spec mining/learning)

Mining oracles

1. Mining finite state machines
2. Mining temporal properties / association rules
3. Mining data invariants

Common assumption [well-enough debugged program]: during
mining (training) only or mostly correct program behaviors are
observed.

INPUT: static traces (paths) or dynamic traces (logs).
OUTPUT: oracles/specifications, that can be checked dynamically
or statically (e.g., through model checking).

Mining finite state machines

Dynamic traces (execution logs)

close() Formatter()

locale(), out()

close()

format(), locale(), out()

format() flush()

FSM
inference

State abstraction

[in=In@6f3321a3,out=Out@5d0385c1] println

[in=In@6f3321a3,out=Out@5d0385c1] Formatter

[in=In@6f3321a3,out=Out@5d0385c1] close

[in=null,out=Out@5d0385c1] println

[in=In@4a3922f3,out=Out@5f0476d2] println

[in=In@4a3922f3,out=Out@5f0476d2] Formatter

[in=In@4a3922f3,out=Out@5f0476d2] format

[in=In@4a3922f3,out=Out@5f0476d2] close

[in=null,out=Out@5f0476d2] println

[in=In@1b25672c,out=Out@34ab4411] println

[in=In@1b25672c,out=Out@34ab4411] Formatter

[in=In@1b25672c,out=Out@34ab4411] format

[in=In@1b25672c,out=Out@34ab4411] format

[in=In@1b25672c,out=Out@34ab4411] format

[in=In@1b25672c,out=Out@34ab4411] close

[in=null,out=Out@34ab4411] println

Execution
logs

in ≠ null,

out ≠ null

Formatter,
format

in = null,

out ≠ null

println

close

println

ADABU [Dallmeier et al.; WODA 2006]

Event sequence abstraction

println

Formatter

close

println

println

Formatter

format

close

println

println

Formatter

format

format

format

close

println

Execution
logs

println println Formatter

format

format close

kTail [Biermann & Feldman; Trans Comp 1972]
KLFA [Mariani & Pastore; ISSRE 2008]
Synoptic [Beschastnikh et al; FSE 2011]
[Ammons et al.; POPL 2002]
[Whaley et al.; ISSTA 2002]

Based on grammar inference, usually
under the constraint that:
no negative example is available.

Grammar inference

K-tail principle:
Two states are merged (matched) if they have the same k-tails

b d a a

c

d b

c

2-tails:
<b, c>
<b, d>

Based on a sample of strings that belong to a language L, we
want to build a regular grammar whose accepted language is as
close as possible to L.

a b c c c c d a

a b c c d a

b c c c c d

b c c c d

Active learning

println println Formatter

format

format close
Software
System

println, Formatter, close?
println, Formatter, println?

yes / no

Learner Teacher

LearnLib [Raffelt et al.; STTT 2009]

Mining temporal properties
Micro-pattern templates:
Sequencing: ab
Loop begin: ab+
Loop end: a+b
Pre-condition: ab?
Post-condition: a?b
Generalized pre-cond: a+b*

Generalized post-cond: a*b+

Association rule: (ab | ba)
General assoc rule: (a+b+| b+a+)

IsEnforcing(sat: int, fail: int) →
 {ENFORCE, LEARN, DEAD}

OCD [Gabel & Su; ICSE 2010]

a b

Alternation rule:
(a b)*

E.g.: lock/unlock

Perracotta [Yang et al.; ICSE 2006]

Association rule mining

DynaMine [Livshits & Zimmermann;
FSE 2005]
[Thummalapenta & Xie; ICSE 2009]
[Weimer & Necula; TACAS 2005]

DynaMine: a ⇒ b
Resorts to mining software
revisions (co-added method
calls) to find rule instances.

Itemset database:
D = {{a, b, c, d, e}, {a, b, d, e, f}, {a, b, d, g}, {a, c, h, i}}
Support of itemsets: support({a, b, d}) = 3
Frequent itemsets (support > 2):
F = {{a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}}
Association rules and confidence for frequent itemset {a, b, d}:
c(A ⇒ B) = P[B | A] = support(A B) / support(A)
{a} ⇒ {b, d} c = ¾ = 75%
{a, b} ⇒ {d} c = 100%
{b} ⇒ {a, d} c = 100%

Mining data invariants
Daikon [Ernst et al.; ICSE 1999]

Invariant templates:
x == c
a <= x <= b
x = a y + b z + c
x = abs(y)
x = max(y, z)
x < y
x == y, x + y == c, x - y == c
sorted(x[])
subsequence(x[], y[])
c in x[], y in x[]
strcmp(x, y) < 0

Dynamically discovered invariants
are reported if the probability for
them to be coincidental is <
confidence threshold (e.g.,
prob(N_occur) < 0.01).

Diduce [Hangal & Lam; ICSE 2002]

Empirical validation
Mined oracles are unsound (FN ≥ 0) and incomplete (FP ≥ 0). Are
they useful in practice?

Key research questions:
1. Missed faults (FN): how many faults are not exposed by the

mined oracle?
2. False alarms (FP): how many false alarms are raised by the

mined oracle?
3. Fault characterization (FC): is there a particular class of faults

that is specifically addressed by the mined oracle? How
relevant is such fault class?

Empirical studies
Oracle mining tool FN FP FC

ADABU [WODA 2006]

kTail [Trans Comp 1972]

KLFA [ISSRE 2008]

Synoptic [FSE 2011]

LearnLib [STTT 2009]

OCD [ICSE 2010]

Perracotta [ICSE 2007]

DynaMine [FSE 2005]

Daikon [ICSE 1999]

Diduce [ICSE 2002]

Most experimental validations focus on the accuracy of the mined
models/specs and conduct in-depth analysis of few sample
anomalies, without any attempt of a systematic evaluation.

Future work

Solid, empirical validation of mined oracles:
• Experimental framework
• Benchmark (programs, test cases, traces, faults, …)
• Key research questions
• Metrics
• Comparative evaluations
• Characterization by fault class

We (probably) do not need more oracle mining techniques; we
(definitely) need to better understand and compare the
effectiveness of existing techniques.

