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Outline 

• Role and classification of (mined) oracles 
• Oracle mining techniques 
• Empirical validation of mined oracles 
• Future research directions 



Role of oracles 

M. Staats, M. W. Whalen and M. P. E. Heimdahl, Programs, Tests, 
and Oracles: The Foundations of Testing Revisited. ICSE 2011. 
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P attempts to 
implement S 

Structure of P may be used to define 
T; Semantics of P determines 
propagation of errors 

S may be used 
to define T 

Effectiveness of testing depends on O; T may influence which 
variables to consider in O 

O approximates S 

Observability of P 
limits information 

available in O 

For a given program P, what combination of tests T and oracle O 
achieves the highest fault revealing level? 



Mutation testing & testability 
Mutation adequacy (revised for any arbitrary o):  
𝑀𝑢𝑡𝑀 𝑝 × 𝑠 × 𝑇𝑆 × 𝑜 ⇒ ∀𝑚 ∈ 𝑀, ∃𝑡 ∈ 𝑇𝑆: ¬𝑜 𝑡, 𝑚  
 
Effectiveness of mutation testing depends on the power of o. 

Testability of program location loc is defined as the probability 
that the system fails if location loc is faulty. 
 
Propagation probability (revised): probability that a perturbed 
value of a at location loc affects a variable used by oracle o. 
Testability of a program depends also on the oracle. 
Low testability locations can be made more testable by using a 
more powerful oracle. 



Oracle comparison 

Oracle power (𝑜1≥𝑇𝑆 𝑜2):  ∀𝑡 ∈ 𝑇𝑆, 𝑜1 𝑡, 𝑝 ⇒ 𝑜2 𝑡, 𝑝  

Oracle power is a partial order relation (not all pairs of oracles 
satisfy the oracle power relation in either direction), hence there 
are un-comparable oracles according to power. 

Probabilistic better (𝑜1 𝑃𝐵𝑇𝑆 𝑜2):  
For a randomly selected 𝑡 ∈ 𝑇𝑆: 𝑃[𝑜1 𝑡, 𝑝 = 𝐹] ≥ 𝑃[𝑜2 𝑡, 𝑝 = 𝐹] 

Probabilistic better is a total order relation. 
Probabilistic better is weaker than (subsumed by) the oracle 
power relation. 



Classes of oracles 

corr(t, p, s): spec s holds for p when t is run. 

Complete oracle: 𝑐𝑜𝑟𝑟 𝑡, 𝑝, 𝑠 ⇒ 𝑜(𝑡, 𝑝) 

• Faults revealed by o are real faults; pass runs may miss a fault. 

Sound oracle: 𝑜 𝑡, 𝑝 ⇒ 𝑐𝑜𝑟𝑟(𝑡, 𝑝, 𝑠) 

• Oracle proves correctness; no fault is missed. 

Perfect oracle: 𝑜 𝑡, 𝑝 ⟺ 𝑐𝑜𝑟𝑟(𝑡, 𝑝, 𝑠) 

1. Unsound/complete [FN ≥ 0; FP = 0] 
• Pre/post-conditions; invariants; assertions 

2. Unsound/incomplete [FN ≥ 0; FP ≥ 0] 
• Anomaly detectors (oracle/spec mining/learning) 



Mining oracles 

1. Mining finite state machines 
2. Mining temporal properties / association rules 
3. Mining data invariants 

Common assumption [well-enough debugged program]: during 
mining (training) only or mostly correct program behaviors are 
observed. 
 
INPUT: static traces (paths) or dynamic traces (logs). 
OUTPUT: oracles/specifications, that can be checked dynamically 
or statically (e.g., through model checking). 



Mining finite state machines 

Dynamic traces (execution logs) 

close() Formatter() 

locale(), out() 

close() 

format(), locale(), out() 

format() flush() 

FSM 
inference 



State abstraction 

[in=In@6f3321a3,out=Out@5d0385c1] println 

[in=In@6f3321a3,out=Out@5d0385c1] Formatter 

[in=In@6f3321a3,out=Out@5d0385c1] close 

[in=null,out=Out@5d0385c1] println 

[in=In@4a3922f3,out=Out@5f0476d2] println 

[in=In@4a3922f3,out=Out@5f0476d2] Formatter 

[in=In@4a3922f3,out=Out@5f0476d2] format 

[in=In@4a3922f3,out=Out@5f0476d2] close 

[in=null,out=Out@5f0476d2] println 

[in=In@1b25672c,out=Out@34ab4411] println 

[in=In@1b25672c,out=Out@34ab4411] Formatter 

[in=In@1b25672c,out=Out@34ab4411] format 

[in=In@1b25672c,out=Out@34ab4411] format 

[in=In@1b25672c,out=Out@34ab4411] format 

[in=In@1b25672c,out=Out@34ab4411] close 

[in=null,out=Out@34ab4411] println 

Execution 
logs 

in ≠ null, 

out ≠ null 

Formatter,  
format 

in = null, 

out ≠ null 

println 

close 

println 

ADABU [Dallmeier et al.; WODA 2006] 



Event sequence abstraction 

println 

Formatter 

close 

println 

println 

Formatter 

format 

close 

println 

println 

Formatter 

format 

format 

format 

close 

println 

Execution 
logs 

println println Formatter 

format 

format close 

kTail [Biermann & Feldman; Trans Comp 1972] 
KLFA [Mariani & Pastore; ISSRE 2008] 
Synoptic [Beschastnikh et al; FSE 2011] 
[Ammons et al.; POPL 2002] 
[Whaley et al.; ISSTA 2002] 

Based on grammar inference, usually 
under the constraint that: 
no negative example is available. 



Grammar inference 

K-tail principle: 
Two states are merged (matched) if they have the same k-tails 

b d a a 

c 

d b 

c 

2-tails: 
<b, c> 
<b, d> 

Based on a sample of strings that belong to a language L, we 
want to build a regular grammar whose accepted language is as 
close as possible to L.  

a b c c c c d a 

a b c c d a 

b c c c c d 

b c c c d 



Active learning 

println println Formatter 

format 

format close 
Software 
System 

println, Formatter, close? 
println, Formatter, println? 

yes / no 

Learner Teacher 

LearnLib [Raffelt et al.; STTT 2009] 



Mining temporal properties 
Micro-pattern templates: 
Sequencing: ab 
Loop begin: ab+ 
Loop end: a+b 
Pre-condition: ab? 
Post-condition: a?b 
Generalized pre-cond: a+b* 

Generalized post-cond: a*b+ 

Association rule: (ab | ba) 
General assoc rule: (a+b+| b+a+) 
 
IsEnforcing(sat: int, fail: int) →  
    {ENFORCE, LEARN, DEAD} 

OCD [Gabel & Su; ICSE 2010] 

a b 

Alternation rule: 
(a b)* 

E.g.: lock/unlock 

Perracotta [Yang et al.; ICSE 2006] 



Association rule mining 

DynaMine [Livshits & Zimmermann; 
FSE 2005] 
[Thummalapenta & Xie; ICSE 2009] 
[Weimer & Necula; TACAS 2005] 

DynaMine: a ⇒ b 
Resorts to mining software 
revisions (co-added method 
calls) to find rule instances. 

Itemset database: 
D = {{a, b, c, d, e}, {a, b, d, e, f}, {a, b, d, g}, {a, c, h, i}} 
Support of itemsets: support({a, b, d}) = 3 
Frequent itemsets (support > 2): 
F = {{a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}} 
Association rules and confidence for frequent itemset {a, b, d}: 
c(A ⇒ B) = P[B | A] = support(A B) / support(A) 
{a} ⇒ {b, d} c = ¾ = 75% 
{a, b} ⇒ {d}  c = 100% 
{b} ⇒ {a, d} c = 100% 



Mining data invariants 
Daikon [Ernst et al.; ICSE 1999] 

Invariant templates: 
x == c 
a <= x <= b 
x = a y + b z + c 
x = abs(y) 
x = max(y, z) 
x < y 
x == y, x + y == c, x - y == c 
sorted(x[]) 
subsequence(x[], y[]) 
c in x[], y in x[] 
strcmp(x, y) < 0 

Dynamically discovered invariants 
are reported if the probability for 
them to be coincidental is < 
confidence threshold (e.g., 
prob(N_occur) < 0.01). 

Diduce [Hangal & Lam; ICSE 2002] 



Empirical validation 
Mined oracles are unsound (FN ≥ 0) and incomplete (FP ≥ 0). Are 
they useful in practice? 
 
Key research questions: 
1. Missed faults (FN): how many faults are not exposed by the 

mined oracle? 
2. False alarms (FP): how many false alarms are raised by the 

mined oracle? 
3. Fault characterization (FC): is there a particular class of faults 

that is specifically addressed by the mined oracle? How 
relevant is such fault class? 



Empirical studies 
Oracle mining tool FN FP FC 

ADABU [WODA 2006] 

kTail [Trans Comp 1972] 

KLFA [ISSRE 2008] 

Synoptic [FSE 2011] 

LearnLib [STTT 2009] 

OCD [ICSE 2010] 

Perracotta [ICSE 2007] 

DynaMine [FSE 2005] 

Daikon [ICSE 1999] 

Diduce [ICSE 2002] 

Most experimental validations focus on the accuracy of the mined 
models/specs and conduct in-depth analysis of few sample 
anomalies, without any attempt of a systematic evaluation. 



Future work 

Solid, empirical validation of mined oracles: 
• Experimental framework 
• Benchmark (programs, test cases, traces, faults, …) 
• Key research questions 
• Metrics 
• Comparative evaluations 
• Characterization by fault class 

We (probably) do not need more oracle mining techniques; we 
(definitely) need to better understand and compare the 
effectiveness of existing techniques. 


