
Runtime Analysis and
Testing in the Cloud

Dr. Wolfgang Grieskamp

Staff Software Engineer, Google USA

CREST Workshop, May 20th, 2012

About me

�  < 2000: Researcher and Lecturer at Technical University of
Berlin

�  2000-2006: Senior Researcher, Microsoft Research

�  2007-2011: Principal Architect, Microsoft Windows
Interoperability Team, Server and Cloud division

�  Since 4/2011: Staff Engineer, Google+ platform and tools,
Google

�  DISCLAIMER: This talk does not necessarily represent
Google’s opinion or direction.

About this talk

Will talk about:

�  How Google monitors and tests Cloud software

�  Quick pitch how Google uses the Cloud itself for
development

Will assume:

�  You know something about software engineering and
about Cloud computing

My Viewpoint

�  As a researcher who tries to identify
open problems (and none-problems!)

�  As an engineer who tries to understand
and improve the process.

What is Cloud Computing?

whereby shared resources, software and information
are provided to computers and other devices

From Wikipedia, the free encyclopedia

Cloud computing is the delivery of computing as a
service rather than a product,

as a utility (like the electricity grid) over a network
(typically the Internet).

Cloud Stack

SAAS Software As A
Service

PAAS Platform As A
Service

IAAS Infrastructure
As A Service

Runtime Analysis and Testing @ Google

Production
Level

Monitoring

Staging
Level

A simulation of the
production

environment with
faked identities

etc.

Uses monitoring
techniques Load testing

Integration
Level

Automated testing
of every code

change over the
dependency

closure

End-to-End testing
with partial
component
isolation

Unit Level
Super-strict
component

isolation using e.g.
dependency

injection

Extensive use of
mock-based

testing

Monitoring and Testing
What the heck is the difference?

�  In testing…
�  we simulate (mock) the environment (aka user)
�  we don’t care as much about performance overhead

�  In monitoring…
�  we are interested mostly in general health not detailed

functionality (assumed its already tested)
�  we use stochastic methods more frequently

�  Otherwise many things similar.

Anatomy of a Data Center

Data Center A Data Center B

 ……

Controller

Controller Server

Server Server Server Server …

Storage Storage Storage Storage Storage

Note: abstracted and simplified

Anatomy of a Server

Data Center A Data Center B

 ……

Controller

Controller Server

Server Server Server Server …

Storage Storage Storage Storage

Logs

Note: abstracted and simplified

Server (VM)

Job Job

Controller

Job

Monitor Monitor Monitor

Alert

Anatomy of a Service

Data Center A Data Center B

 ……

Controller

Controller Server

Server Server Server Server …

Storage Storage Storage Storage

Note: abstracted and simplified

Service (across Servers)

Job Job

Job

Job

Job

Job

Storage Storage

Monitoring Types @ Google

� Black Box Monitoring

� White Box Monitoring

� [Log Analysis]

Black Box Monitoring
How its done @Google

�  Frequently send requests and analyze the response
�  Possible because server jobs are ‘stateless’ and always

input enabled

�  If failure rate over a certain time interval exceeds a
given ratio, raise an alert and page an engineer
�  Engineers aim for minimizing paging and avoiding false

positives

Job

Monitor

Black Box Monitoring:
How its done @ Google (cont.)

�  There are rule based languages for defining request/
responses. Each rule:
�  Synthesizes an HTTP request
�  Analyzes the response using a regular expression
�  Specifies frequency and allowed failure ratio

�  Rules are like tests: a simple trigger and a simple
response analysis

�  Monitors can be also custom code

Job

Monitor

Black Box Monitoring:
How is it doing?

�  Is the ‘stateless’ hypothesis feasible?
�  Yes, as these are health tests, state can be ignored

�  What is the relation to testing?
�  In theory very similar, only that the environment is not

mocked.
�  In practice uses quite different frameworks/languages

�  What about service/system level monitoring?
�  Its only about one job.
�  Doesn’t give failure root cause (it only measures a

symptom)

Job

Monitor

White-Box Monitoring
How its done @Google

�  Server exports collection of probe points (variables)
�  Memory, # RPCs, # Failures, etc.

�  Monitor collects time series of those values and
computes functions over them

�  Dashboards prepare information graphically

�  Mostly used for diagnosis by humans

Job

Monitor

White-Box Monitoring:
How its done @ Google (cont.)
�  Declarative language for time series computations

�  Collects samples from the server by memory scraping

�  Merging of similar data from multiple servers running
the same job

�  Rich support for diagram rendering in the browser

Job

Monitor

White-Box Monitoring:
How is it doing?

�  Design for monitorability/testability?
�  Its already ubiquitous throughout, since software engineers

are themselves on-call…

�  Distributed collection/network load?
�  Not really an issue because it’s sample based

�  Relation to testing?
�  Same as with black-box – should be a common framework.

�  Automatic root cause analysis and self-repair?
�  Current systems mostly build for human analysis and repair.
�  Self-repair would be a big thing.

Job

Monitor

�  Two or more components are plugged together with a
partially mocked environment

�  The environment provides stimuli and checks
expectations

�  Usually runs on a single machine

�  Can be deployed to the cloud for large scale testing

Integration Testing:
How its done @Google

Job Job Job

Storage

�  Integration test are often ‘flaky’ (unreliable)

�  Difficulty to construct mocked component’s precise
behavior (its more than a simple mock in a unit test)

�  Difficulty to synthesize mocked component’s initial
state (it may have a complex state)

�  Potential solution: model-based testing and simulation

Integration Testing
How is it doing?

Job Job Job

Storage

Exploiting the Cloud for
Development

Idle Resources

Peak demand problem: as with other utilities, the cloud
must have capacity to deal with peak times: 7am, 7pm,
etc.

�  Huge amounts of idle computing resources available in
the DCs outside of those peak times

�  Literally hundreds of VMs may be available for a single
engineer on a low-priority job base

è Game changer for software development tools

Using the Cloud for Dev @ Google

�  Distributed/parallel build
�  Every engineer can build all of Google’s code + third party

open source code in a matter of minutes (sequential build
would take days)

�  Works by constructing the dependency graph than using map/
reduce technology

�  Distributed/parallel test
�  Changes on the code base are continuously tested against all

dependent targets once submitted
�  Failures can be tracked down very precisely to the given

change which have introduced them

�  Check out http://google-engtools.blogspot.com/ for details

Conclusions

�  The Cloud brings new challenges for runtime analysis
and testing.
�  Many of them are adequately solved – others wait for

improvements.

�  The Cloud brings new opportunities for software
development tools.

