
Extension, Abbreviation and Refinement

-Identifying High-Level Dependence Structures

Using Slice-Based Dependence Analysis

Zheng Li

CREST, King’s College London, UK

Overview

• Motivation

• Three combination techniques

– Extension

– Abbreviation

– Refinement

Many analysis techniques for program

comprehension have been proposed

Domain knowledge

high-level

Source code

low-level

Pattern recognition

Concept assignment
Data-flow analysis

Dependence analysis

Advantages and Disadvantages

High-level Low-level

Accuracy Low High

Scalability Yes No

Human

Knowledge
Yes No

If combine the two?

• High-level techniques can provide a

reasonable analysis scope with domain

knowledge for low-level analysis techniques,

then avoiding the scalability problem of low-

level techniques.

• Low-level techniques can improve the

accuracy of high-level techniques.

In this thesis

Concept

Assignment

Program

Slicing

Concept Assignment

• First defined in 1993 and aimed at
comprehension tasks

• allocate specific high-level meaning to
specific parts of a program

• Hypothesis-Based Concept Assignment (HB-
CA)
– Existing implementation

– Uses domain and program semantics

– Good quality assignments

Program Slicing

we only care about this line

which other lines affect the selected line?

Concept Assignment Program Slicing

Contiguous?

Executable?

High/low level?

Combination 1: Extension

• Concept Slice

– Using program slicing to ‘extend’ a concept

binding by tracing its dependencies

• Algorithm

– Using concepts as slicing criteria, the

concept slice is the union of slices for each

program point in the concept

Combination 2: Abbreviation

• Extract key statements within concept bindings

Less is More!

– The statements that capture most impact with

highest cohesion

– help to focus attention more rapidly on the core of a

concept binding

• Algorithm

– Intersection of slices with respect to principal

variables within a concept binding

D=2*r;

perimeter=PI*D;

undersurface=PI*r*r;

sidesurface=perimeter*h;

area=2*undersurface+sidesurface;

volume=undersurface*h;

printf(“\nThe Area is %d\n",);

printf(“\nThe Volume is %d\n",);

r

h

area

volume

The Results so far

The concept slice has no size explosion.

The identified key statements have high

Impact and Cohesion, but some concept

bindings do not contain key statements.

Combination 3: Refinement

A more accurate dependence based

concept binding by removing

non-concept-dependent statements

D=2*r;

perimeter=PI*D;

undersurface=PI*r*r;

sidesurface=perimeter*h;

area=2*undersurface+sidesurface;

volume=undersurface*h;

printf(“\nThe Area is %d\n", area);

printf(“\nThe Volume is %d\n", volume);

r

h

Program Chopping

Given source S and target T, what program

points transmit effects from S to T?

S T

Vertex Rank Model

• Google’s Page Rank Model

• Dependence is transitive

• the weight of a vertex will be distributed

following the outgoing edges and

inherited through incoming edges.

Weight of Nodes

• sum of all node weights = 1

• weight of node represents the

importance of dependence of a vertex

Weights of Edges

• Node weight is distributed to each outgoing edge

• Edge weights are collected at the destination node

• sum of all outgoing edge weights = origin node weight

• sum of all incoming edge weights = destination node weight

A0.2

0.05

0.05

0.05

0.05

B

0.2

0.05

0.15

0.4

d=1/4

d=1/4

d=1/4

d=1/4

d: distribution ratio

Definition of Weights





















)(

)(

)(

2

1

nvw

vw

vw






















)(

)(

)(

2

1

nvw

vw

vw



t

ddd

ddd

ddd

nnnn

n

n





























21

22221

11211

= .

Dt: transposed matrix of

distribution ratios

W: node weight vector

Propagating Weights

A B

C

0.34 0.33

0.33

0.17

0.17

0.330.33

Propagating Weights

A B

C

0.33 0.17

0.5

0.175

0.175

0.170.5

Propagating Weights

A B

C

0.5 0.175

0.345

0.25

0.25

0.1750.345

Propagating Weights

• Stable weight assignment

– next-step weights are the same as previous ones

A B

C

0.4 0.2

0.4

0.2

0.2

0.20.4

Pseudo Use Relation

• Weight computation does not always converge

• Add a pseudo edge from a node to another,

if there is no 'real' edge

• Distribution ratios:

pseudo edges << real edges

A B C

Empirical Study

• Tools

– WeSCA and CodeSurfer

• 10 Subject programs

– Open source and industry code

– More than 600 concept bindings are extracted

• Dependence based metrics are defined

• Statistical analysis

Size reduction

Impact

Cohesion

Summary

• The combination of approaches can be

fully automated and implemented.

• Concept refinement is better than concept

extension and concept abbreviation.

Questions?

