Abstract Program Slicing:
Abstract interpretation-based approaches to Slicing

Isabella Mastroeni
(Burica Nikoli¢ and Damiano Zanardini)

Dipartimento di Informatica, University of Verona, Italy

30 April 2012

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 1/19

PROGRAM SLICING: BASIC NOTIONS

Program Slicing

A program decomposition technique that extracts from programs
statements which affect parameters of interest

Slicing Criterion
Contains different parameters of interest (e.g., C = (V, n) [Weiser '79])

v

Program Slice
An executable program obtained that way

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 2/19

PROGRAM SLICING: BASIC NOTIONS

Example
1 begin
> read(x,y);
3 total := 0.0;
4+ sum := 0.0;
s ifx<=1
s then sum :=y;
» else begin
8 read(z);
o total := xxy;
10 end;

11

write(total, sum);

12 end.

= Slices depend on slicing criterion

begin begin begin
read(x, y); read(x, y); read(x, y);
ifx <=1 end. total := 0.0;
then if x <=1
else then
read(z); else
end. total := x*y;
end.
(12, z) (9, x) (12, total)

Mastroeni (CREST 2012 -

Abstract Program Slicing

30 April 2012

2/19

THE IDEA

Limitations
@ Sometimes standard criteria are too strong

Weakening slicing
@ Suppose we want a variable x to have a property p at some point n
@ The exact value of x can be expressed as p = id = \a.a
@ We are interested in the statements that affect p(x) at n
@ Abstract slices should be smaller

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 3/19

THE IDEA

Example
a = 1;
Pcl_ef b = b+1;
"\ e = @i
d = c+b+a—a+c;

Abstract criterion: Parity of d

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 3/19

THE IDEA

Example
a = 1,
Pcl_ef b = b+1;
"\ e = @i2
d = c+b+a—a+c;

Abstract criterion: Parity of d

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 3/19

THE IDEA

Example

b = b+1;

d = c+b+a—a+g;

Abstract criterion: Parity of d

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

3/19

RELATED WORKS

[Amtoft & Banerjee ’07]

Slicing by means of a calculus for independencies
@ Syntactic dependencies
@ Forward slicing

[Rival '05]

Abstract dependencies
@ Mathematical, set theoretic definition of dependencies
@ Applied to Alarm diagnosis

[Hong et al. "05]
Abstract Slicing
@ Only for predicate abstractions
@ Considers a subset of possible executions

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

4/19

Introduction ABSTRACT PROGRAM SLICING

ABSTRACT INTERPRETATION-BASED APPROACHES

Definition of Slicing

Computation of Slicing
Standard

Formal Framework
[Binkley et al. '06]

Program dependency

graphs
[Reps et al.'89]

Abstract

Definition of Abstract
Slicing
(Abstract Framework)

[Mastroeni&Nikolic '11]

Mastroeni (CREST 2012

Abstract Program Slicing

30 April 2012 5/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Well-formed lists: (1,2, 3,4, [0])++(5,6, [0]) = (1,2,3,4,5,6,[0])

The properties of interest are represented by abstract domains for
nullity and well-formedness:

wellFormed(x) = notNil(x) A lastEl(x).data = 0

Pnil PWF

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {

list xlast;

list xtmp;

while (l—next != null){
tmp = l—>next;
l—>next = last;
last = 1;
l = tmp;

}

return last ;

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1

SR B [OX-Ea
i ;

wlliitle*El—>next I= null){ n

t = l—=next;
l—>next = r;

r =1;
I = &5
}
return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n—>| 1 |T| HO]N“‘“

list s*r;

list *t; IL
while (l—next != null){ - n

t = l->next;
l—>next = r;
I

t;

T

1
}

return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l->next = r;
I
t

T

1
}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r; ! .H[O]N
list *t;
while (1—next != null){ i n

t = l—=next;
l—>next = r;

r=1

I = &5
}
return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l—>next = r;

r =1;
=t

}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l->next;
l—>next = r;
I
t

T

1
}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l->next = r;
I
t

T

1
}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l—>next = r;

r=1

I = &5
}
return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l—>next = r;

r =1;
=t

}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l->next;
l—>next = r;
I
t -

)

r
1

}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l->next = r;
I
t

T

1
}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l—>next = r;

r=1

I = &5
}
return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list s*r;
list *t;
while (l—next != null){
t = l—=next;
l—>next = r;

|

r =1;
=t

}

return r;

}

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n_
-

list s*r;

list *t;

while (l—next != null){
t = l->next;
l—>next = r;

I

t -

)

r
1

}

return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n_
list s*r;
list *t: n_
while (l—next != null){
t = l—=next;
l->next = r;
r =1;
I = &5
}
return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n_ |1
list s*r;

list *t;
while (l—next != null){
t = l—=next;

l—>next = r; »

+—{01X il

r=1; Y
I = & e -« |
7 4)
) [4]
return r;

) 0 X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n_ |1
list s*r;
list *t; n_

while (l—next != null){
t = l—=next;

l—>next = r; »

+—{01X il

r =1; Y
=t P —
) [4]°
return r;
) X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) {
list *r; n_ | 1
list *t; n_
while (l—next != null){
t = l—=next;

l—>next = r; »

+—{0X il

r =1; Y
I = &5 P —
) EaE
return r;
) X

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

REVERSING WELL-FORMED LISTS [Zanardini '08]

Reversing the list

list rev(list 1) { n_ |1
list *r;

+—{0X il

list *t;
while (l—next != null){
t = l—=next;

l—>next = r; »

r =1; Y
I = &5 PEE——
) 4]!
return r;
) UL

= if r is well-formed before while,
it is well-formed after while as well

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 6/19

Introduction FORMS OF PROGRAM SLICING

Formal Framework [Binkley at al. '06]

TYPES

STATIC S

all possible inputs

CONDITIONED C

some particular inputs

Dynawmic D

one particular input

STANDARD

IC

point + variables ||only some iterations

KL

the same paths

KL + IC

Mastroeni (CREST 2012 - UCL)

FORMS

Abstract Program Slicing

30 April 2012 7/19

FORMS OF PROGRAM SLICING
Formal Framework [Binkley at al. '06]

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 7/19

FORMS OF PROGRAM SLICING
Formal Framework [Binkley at al. '06]

SEMANTIC CONSTRAINTS

maps slicing criteria to semantic equivalence relations

[

(E,€)

A
TRADITIONAL SYNTACTIC ORDERING
QLC P& F(Q) CF(P)

F(P) maps [to c iff P contains statement ¢ at line

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 7/19

Introduction FORMS OF PROGRAM SLICING

Formal Framework [Binkley at al. '06]

Hierarchy of Existing Forms of Slicing

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing

30 April 2012

7/19

Introduction GENERALIZATION OF SLICING CRITERION

VARIABLES OF
INTEREST: V'

ZzoRTIEH~=IAQ

Mastroeni (CREST 2012

Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

STATIC CONDITIONED DyNnaMIC
all possible inputs |some particular inputs|| one particular input

VARIABLES OF
INTEREST: V'

Zo—=amEHRH~=ZQ

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

STATIC CONDITIONED DyNnaMIC
all possible inputs |some particular inputs|| one particular input
I=M oCICM |Z \ =1
|
INPUTS OF

INTEREST: 7

VARIABLES OF
INTEREST: V'

ZzoRTIEH~=IAQ

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

INPUTS OF

INTEREST: 7
VARIABLES OF ITERATION COUNT
INTEREST: V only particular iterations

NON-ITERATION
COUNT all iterations

ZzoRTIEH~=IAQ

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

C INPUTS OF

R | INTEREST: Z O =n x p(N)

I |VARIABLES OF ITERATION COUNT
T |INTEREST: V only particular iterations
E OCCURRENCES NON-ITERATION

; OF INTEREST: O COUNT all iterations
) O=nxN

N

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

INPUTS OF
INTEREST: 7

VARIABLES OF
INTEREST: V'

OCCURRENCES
OF INTEREST: O

Zo—=amEHRH~=ZQ

KL
the same paths

NoN - KL

even different paths

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

INPUTS OF
INTEREST: 7

VARIABLES OF
INTEREST: V'

OCCURRENCES
OF INTEREST: O

IPATH REQUIREMENT

/e
L

L = true L = false
KL NonN - KL

the same paths even different paths

Zo—=amEHRH~=ZQ

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

Introduction GENERALIZATION OF SLICING CRITERION

the same paths

STATIC CONDITIONED DyNAMIC
all possible inputs |some particular inputs|| one particular input
=M g CICM |Z| =1
[
C INPUTS OF
R | INTEREST: Z O =n x p(N)
I |VARIABLES OF ITERATION COUNT
T |INTEREST: V only particular iterations
E
R OCCURRENCES NON-ITERATION
; OF INTEREST: O COUNT all iterations
O PATH REQUIREMENT O=nxN
N L
|
L = true L = false
KL Non - KL

even different paths

Mastroeni (CREST 2012 - UCL)

Abstract Program Slicing 30 April 2012

8/19

Introduction GENERALIZATION OF SLICING CRITERION

STATIC CONDITIONED DyYNAMIC
all possible inputs _[lome particular inputs|| one particular input
I-M ZCICM |Z[=1

T
c| INPUTS OF
R |_INTEREST: T O =nx p(N)
1 [VARIABLES OF TTERATION COUNT
T |INTEREST: V' only particular iterations
1‘2 OCCURRENCES NON-ITERATION
1 lor INTEREST: O COUNT all iterations
0 [PATH REQUIREMENT] O=nxN
N /5
L = true L = false

ON -
the same paths || even different paths

Generalized Slicing Criterion

C=(I,V,0,L),
where
@ 7 C M - set of INPUTS of interest,
@ V - set of VARIABLES of interest,
® O € n x p(N) - set of OCCURRENCES of interest,
@ [c {true, false} - determines a KL form.

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 8/19

ABSTRACTING GENERALIZED SLICING CRITERION

Generalized abstract criterion

V - VARIABLES OF INTEREST

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 9/19

ABSTRACTING GENERALIZED SLICING CRITERION

Generalized abstract criterion
V= (Vi,..., Vi) - A PARTITION OF V

V1

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 9/19

ABSTRACTING GENERALIZED SLICING CRITERION

Generalized abstract criterion
V= (Vi,..., Vi) - A PARTITION OF V

V1

P1
A={p, ...

, Pk) - PROPERTIES OF INTEREST

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 9/19

ABSTRACTING GENERALIZED SLICING CRITERION

Generalized abstract criterion

V= (Vi,..., Vi) - A PARTITION OF V PATHS
7| » ol ¢
INPUTS OCCURRENCES
P1
A= {p1,...,pr) - PROPERTIES OF INTEREST

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 9/19

ABSTRACTING GENERALIZED SLICING CRITERION

Generalized abstract criterion
VARIABLES PATHS

I V O | L A

INPUTS (OCCURRENCES PROPERTIES

Example

Var = {x1, %2, x3, X4} V= {x1, X, x3}
PROPERTIES OF INTEREST: SIGN2 of X; x X and PAR of x3
=V ={({x,x},{x3a}) A= (SIGN? PAR)

POS ifxxy >0 v
SIGN2(x,y) ={ 0 ifxxy=0 PAR(x) = { VRN o D CUEl
. obD otherwise
NEG otherwise

v

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

9/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

begin

1
2 read(n);

3 i:=1;

4 s:=0;

5 p:=1;

. while (i<=n) do o={n<2}
7 begin

8 si=s8+1;

9 p:=pxi;

10 1:1~F17

11 end;

12 write(s);

13 write(p);

14 end;

Mastroeni (CREST 2012 Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

begin
read(n);
i:=1;
s:=0;
p:=1;
while
begin
si=s8+1;
p:=p*i;
i:=i+4+1;
end;
write(s);
write(p);
end;

(i<=n) do

)
)

Mastroeni (CREST 2012 - UCL)

o={n<2}

2 2 1 2 10 2 101
B BT BT BN
2101 2111 2 111 2 2 11
] B ﬂﬁ\%’\é\i’\ 1o EIRARIE
2 211 2 2.3 1 2%2 2 332
BT T ETE) ETTT] W

2332 2332 2 3 3 2

BT B B
Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

L - ADDITIONAL POINTS OF INTERESTED
def (nyo [*V) if (n,k) € O
)(n,k,a):e (nol*@) if(nk)¢OAnel
A otherwise
V= {i},{s}), O ={8} x N, L = {6}, A= (SIGN, PAR)

Hie%
Proj o.1.4

2 2 1 2 10 2 101
> RINN - REEN BHENN - B
2 101 2 111 2 111 2 2 11
- RIRAEIEA < EARARIEAN o EARARIEAN o LAKARIED
22 11 2231 2 23 2 2 332
- EIRIEIEANY - KAKAEIEA NN - EARARIEDNN - EARARDED
2332 23373 2 332
o [KEIEANS - EARAESEANS : EARAENED

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

L - ADDITIONAL POINTS OF INTERESTED
def (n,o 1*V) if (n,k) € O
Projlss 1 ay(n ko) = 3 (n,0 [@) it (nk)¢ OnnelL
' A otherwise
= ({i},{s}), O = {8} x N, L = {6}, A = (SIGN, PAR)

| DDA pelDXDIPTR]
| BDDXDTH] [P
| pDDKDTR] DD

OPW | Lp—=| pO

DN | P | P
Qo
b

SO | Sep

P | P

)
SN0 | Spro

1 B
) e
3#[\: 3o

DN | S

Inl

S PW [SPDN | S P

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

L - ADDITIONAL POINTS OF INTERESTED
def (nyo [*V) if (n,k) € O
)(n,k,a):e (no®@) if(nk)¢OAneL
A otherwise
V = {i},{s}), O = {8} x N, L = {6}, A = (SIGN, PAR)

Hie%
Proj o.1.4

[RGN Z|2|3|?17| PODDDR] - DR
BT BATTTH DO D

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

L - ADDITIONAL POINTS OF INTERESTED
def (nyo [*V) if (n,k) € O
)(n,k,a):e (no®@) if(nk)¢OAneL
A otherwise
V = {i},{s}), O = {8} x N, L = {6}, A = (SIGN, PAR)

Hie%
Proj o.1.4

" ol R O I T O
" ol O SO I T O

b=

ESNARS

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
SYSTEM STATES AND TRACES

L - ADDITIONAL POINTS OF INTERESTED
def (nyo [*V) if (n,k) € O
)(n,k,a):e (no®@) if(nk)¢OAneL
A otherwise
V = {i},{s}), O = {8} x N, L = {6}, A = (SIGN, PAR)

Hie%
Proj o.1.4

BT BT DO WD

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 10/19

ABSTRACT FORMAL FRAMEWORK
ABSTRACT UNIFIED EQUIVALENCE

@ P, Q - executable programs,

@ Ip, Iq - sets of line numbers of P and Q

@ Cy=(I,V,0,L,A) - abstract criterion

@ L,(P,Q)=L7?IpNIlg : @

@ Pis Abstract Equivalentto Q (P UA(Z,V,0, L., A) Q) iff

Vo € 1.Projyy, 0.1, 4)(TB) = Proji, o 1, 4)(T8)

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

11/19

ABSTRACT FORMAL FRAMEWORK
EXTENDED FRAMEWORK

Semantic Constraint

Ea E NZ,V,0,L,A).UNTL,V,0,L;, A

(C,E4) - Representation of Abstract Forms of Slicing

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

12/19

ABSTRACT FORMAL FRAMEWORK
EXTENDED FRAMEWORK

Semantic Constraint J

E4 E MZ,V,0,L,A).UNT,V,0,Lc, A)

(C,E4) - Representation of Abstract Forms of Slicing

0

We have inserted Abstract Slicing in Formal Framework

\U/— Extended Theory

Enriched Hierarchy

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 12/19

Abstract Program Slicing ABSTRACT FORMAL FRAMEWORK

EXTENDED FRAMEWORK

(C, E4) - Representation of Abstract Forms of Slicing
Enriched Hierarchy

(S, Skr)
(G, ¢xr)

(=0} (C, Skri)
(C, Pxr)

(C,0) (C, Crri)
(E|S)

(C,D) (C.Dk1i)
(E)C)
(C, D)

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 12/19

Abstract Program Slicing ABSTRACT FORMAL FRAMEWORK

EXTENDED FRAMEWORK

(C, E4) - Representation of Abstract Forms of Slicing
Enriched Hierarchy

(S, Skr)

(G, ¢xr)
(C, Skwi)

(C,AS) (€, Pxe)
(C,Cxri)

(C.AC) (C)S)
(E. Dxri)

(T, 4D) (cle)

(C, D)

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 12/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X =y+2z

SYNTACTIC DEF-REF :
x depends on 'y and on z

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X =y+2z
X depends ony and on z
SYNTACTIC DEF-REF :
X=Z+y—-Yy
X depends on y and on z

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X=z+y—y

SIESBIG - { x depends on z but it does NOT depend on'y

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X=zZ+y—-y

x depends on z but it does NOT depend on'y
SEMANTIC :

X =2y

x depends on y

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X :=2y
x does NOT depend on 'y

ABSTRACT SEMANTIC (PARITY) : {

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 13/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
SLICING VS DEPENDENCIES
Slicing

...extracts from programs the statements which
are relevant for a given behaviour.

Dependency
...defines what relevant means.

Example

X =2y
x does NOT depend on 'y
ABSTRACT SEMANTIC (PARITY) :
X =2y+2z
X depends on z

v
Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 13/19

Computing abstract slices ABSTRACTING PDG [MASTROENI&ZANARDINI '08]

SLICING BY PRUNING PDG

Program Dependency Graphs (PDG) are defined by two kind of edges
(81, S2):

Control Flow Edge

S1 represents a control predicate and s, represents a
component of the program immediately nested within the predicate s1;

Flow Dependence Edge

s defines a variable x which is used in s
i.e., x edef(sy)nref(s,),
and x is not further defined between sy and sy;

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 14/19

Computing abstract slices ABSTRACTING PDG [MASTROENI&ZANARDINI '08]

SLICING BY PRUNING PDG

Program Dependency Graphs (PDG) are defined by two kind of edges
(81, S2):

Control Flow Edge

S1 represents a control predicate and s, represents a
component of the program immediately nested within the predicate s1;

Flow Dependence Edge

s defines a variable x which is used in s
i.e., x edef(sy)nref(s,),
and x is not further defined between sy and sy;

4

Flow dependence edges = DIRECT FLOWS=DEF-REF dependencies
Control flow edges = INDIRECT FLOWS

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 14/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
PRUNING DEPENDENCIES

Kind of dependencies
@ Data dependencies (Assignments);
@ Control dependencies (Control structures)

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

15/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
PRUNING DEPENDENCIES

Kind of dependencies
@ Data dependencies (Assignments) = Direct flows;
@ Control dependencies (Control structures) = Indirect flows

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

15/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
PRUNING DEPENDENCIES

Kind of dependencies
@ Data dependencies (Assignments) = Direct flows;
@ Control dependencies (Control structures) = Indirect flows

We propose a PRUNING of data dependencies!

4

STILL WE LOSE SOMETHING ABOUT CONTROL DEPENDENCIES!

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

15/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
PRUNING DEPENDENCIES

Kind of dependencies
@ Data dependencies (Assignments) = Direct flows;
@ Control dependencies (Control structures) = Indirect flows

Example
if (y +2x mod2) ==0then w:=0else w:=0

= The guard DOES NOT DEPEND on x: OK

= The variable w DOES NOT DEPEND on y: NO!

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 15/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 X2 x3 x4

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4
I{ ilﬂ No need to compute

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING PDG [MASTROENI&ZANARDINI '08]
DERIVING ABSTRACT DEPENDENCIES

Systematic way to go through the (variables and states)-space

@ Incrementally find the set X of variables which are enough to
determine the value of e

@ X determines e if any change to other variables can be ignored
(needs to go into the state space)

x1 x2 x3 x4

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

16/19

ABSTRACTING CFG [MASTROENI&NIKOLIC "11]
Slicing by abstracting CFG

@ Start from a static slice of a program

@ Derive an abstraction p from C4 and construct abstract states
using p

@ Determine an abstract state graph ASG
@ Abstract Slice corresponds to a pruned ASG

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

17/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

.read (n
.read (s
s = g
.while (i<=n) do
.S =8 4 2%i;
o 1= 141,

-od

);
)i

Mastroeni (CREST 20 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

5. s:=54+2%1;
6. 1:=1+1;
end

Mastroeni (CREST 201

Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

1. read(n); VARIABLES PATHS
2. read(s);
. M (s) {7} x N|| false [(PAR)
3. 1:=1;
INPUTS OCCURRENCES PROPERTIES

ML all possible inputs

EVEN ifx=,0
IPLe) = { ODD otherwise

5. s:=54+2%1;
6. 1:=1+1;
end

Mastroeni (CREST 201

Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG

read(n); VARIABLES PATHS
o hNg readl(s) M (s) {7} x N|| false [(PAR)
INPUTS OCCURRENCES PROPERTIES
ML all possible inputs
P ={ G 5220
v
Mastroeni (CREST 201 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrG

VARIABLES PATHS
M (s) {7} x N|| false [(PAR)
INPUTS OCCURRENCES PROPERTIES
ML all possible inputs
P ={ G 5220

Mastroeni (CREST 201

Abstract Program Slicing

30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrG

1. read(n);
EVEN2. read(s); obD
3. 1:=1;

.5 =5+ 2%

6. 1:=1+1;
EVEN ODD
end

Mastroeni (CREST 2012 -

Abstract Program Slicing

30 April 2012

18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG

. read(n);
EV hN2 read(s), oDD
S do=1l:

5. s:=54+2%1;

6. 1:=1+1;
EVEN ODD
end

BLOCK A

v
B BLOCK - a strongly connected component
EIHEXOIX with 1 incoming and 1 outgoing edge

)

BLOCK C'

Mastroeni (CREST 2012 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrG

1. read(n);
EVEN2. read(s); obD
3. 1:=1;

.5 =5+ 2%

6. i:=4+1;
EVEN ODD
end
BLOCK A
g= E+
BLOCK - a strongly connected component
with 1 incoming and 1 outgoing edge
s=Ey
BLOCK C'
v
Abstract Program Slicing 30 April 2012 18/19

Mastroeni (CREST 2012 -

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrFG
1. read(n);
EVEN2. read(s); opD
3. i:=1;

5. s:=54+2%1;

6. i:=1+1;
EVEN ODD
end
BLOCK A
g= E+
Brock <47 E>7 <57 E>7 <67 E>
Input: s = E Output: s = E
s=Ey = we can remove it
BLOCK C'
v
Abstract Program Slicing 30 April 2012 18/19

Mastroeni (CREST 2012

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrG

1. read(n);
EVEN2. read(s); obD
3. 1:=1;

.5 =5+ 2%

6. i:=1+1;
EVEN ODD
end

BLOCK A
6= E+

= E+
BLOCK C'

Mastroeni (CREST 2012 -

Abstract Program Slicing

30 April 2012

18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CrFG
1. read(n);
EVEN2. read(s); opD
3. i:=1;

.5 =5+ 2%
6. 1:=1+1;
EVEN ODD

end
BLOCK A
+s =0
Brock <47 O>7 <57 O>7 <67 O>
Input: s = O Output: s =0
ys5=0 = we can remove it
BLOCK C'

Mastroeni (CREST 2012 -

Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG

. read(n);
EV hN2 read(s), ODD
3. i:=1;

5. s:=54+2%1;
6. 1:=1+1;
EVEN ODD

end
BLOCK A Y Y
7.E 7,0
+s =0
*5 =0
BLOCK C'
v
Mastroeni (CREST 2012 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG
. read(n);
EV hN2 read(s), ODD
3. i:=1;

5. s:=54+2%1;
6. 1:=1+1;
EVEN ODD

end
BLOCK A A '
7.E 7,0
+s =0
*5 =0
BLOCK C'
v
Mastroeni (CREST 2012 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG
read(n);
EV hN2 read(s), ODD
3. i:=1;

5. s:=54+2%1;
6. 1:=1+1;
EVEN ODD

end
BLOCK A Y Y
7.E 7,0
+s =0
*5 =0
BLOCK C'
v
Mastroeni (CREST 20 Abstract Program Slicing 30 April 2012 18/19

Computing abstract slices ABSTRACTING CFG [MASTROENI&NIKOLIC "11]

Example

CFG

. read(n);
EV hN2 read(s), oDD
3. 1:=1;

5. s:=54+2%1;

6. 1:=1+1;
EVEN ODD
end

Mastroeni (CREST 2012 Abstract Program Slicing 30 April 2012 18/19

CONCLUSIONS

Putting all together
@ Generalized Slicing Criteria (Traditional and Abstract versions)
@ Extension of Unified Formal Framework
@ Formal definition of Abstract Program Slicing

@ Semantic and constructive characterization of abstract
dependencies

@ First steps towards an implementation of abstract program slicing

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 19/19

CONCLUSIONS

Limitations
@ If the property used for the construction of ASG is too much
abstract, the Simple Approach returns the static slice
@ This approach cannot be used for the extraction of dynamic and
conditional slices: Extended Approach is one possible refinement
of this algorithm

@ Still a lot of work to do for obtaining a real implementation

@ Also the semantic and constructive characterization of abstract
dependencies is still far from its use in a real implementation of
abstract slicing

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012 19/19

CONCLUSIONS

Ideas for the Future
@ Improvement and implementation of proposed algorithm(s)
@ Obfuscation and Watermarking vs. Abstract Slicing
@ Abstract slicing for malware detection

Mastroeni (CREST 2012 - UCL) Abstract Program Slicing 30 April 2012

19/19

	Introduction
	Program Slicing
	Abstract Program Slicing
	Forms of Program Slicing
	Generalization of Slicing Criterion

	Abstract Program Slicing
	Abstract Criterion
	Abstract Formal Framework

	Computing abstract slices
	Abstracting PDG [Mastroeni&Zanardini '08]
	Abstracting CFG [Mastroeni&Nikolic '11]

	Conclusions

