Abstract Program Slicing: Abstract interpretation-based approaches to Slicing

Isabella Mastroeni (Đurica Nikolić and Damiano Zanardini)

Dipartimento di Informatica, University of Verona, Italy

30 April 2012

PROGRAM SLICING: BASIC NOTIONS

Program Slicing

A program decomposition technique that extracts from programs statements which affect parameters of interest

Slicing Criterion

Contains different parameters of interest (e.g., C = (V, n) [Weiser '79])

Program Slice

An executable program obtained that way

PROGRAM SLICING: BASIC NOTIONS

Example 1 begin read(x,y);begin begin begin total := 0.0;read(x, y); read(x, y);read(x, y): sum := 0.0;if $x \le 1$ end total := 0.0: if $x \le 1$ then if $x \le 1$ then sum := v; else then else begin read(z); else read(z); end. total := x*y;total := x*v;end end: 10 write(total, sum); 12 end (12, z)(9, x)(12, total) ⇒ Slices depend on slicing criterion

Limitations

Sometimes standard criteria are too strong

Weakening slicing

- Suppose we want a variable x to have a property ρ at some point n
- The exact value of x can be expressed as $\rho = id = \lambda a.a$
- We are interested in the statements that affect $\rho(x)$ at n
- Abstract slices should be smaller

Example

$$P \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} a & := & 1; \\ b & := & b+1; \\ c & := & c+2; \\ d & := & c+b+a-a+c; \end{array} \right.$$

Abstract criterion: Parity of d

Example

$$P \stackrel{\text{def}}{=} \begin{cases} a := 1; \\ b := b+1; \\ c := c+2; \\ d := c+b+a-a+c; \end{cases}$$

Abstract criterion: Parity of d

Example

$$P \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} b & := & b+1; \\ d & := & c+b+a-a+c; \end{array} \right.$$

Abstract criterion: Parity of d

RELATED WORKS

[Amtoft & Banerjee '07]

Slicing by means of a calculus for independencies

- Syntactic dependencies
- Forward slicing

[Rival '05]

Abstract dependencies

- Mathematical, set theoretic definition of dependencies
- Applied to Alarm diagnosis

[Hong et al. '05]

Abstract Slicing

- Only for predicate abstractions
- Considers a subset of possible executions

ABSTRACT INTERPRETATION-BASED APPROACHES

Well-formed lists: $\langle 1, 2, 3, 4, [0] \rangle + + \langle 5, 6, [0] \rangle = \langle 1, 2, 3, 4, 5, 6, [0] \rangle$

The properties of interest are represented by abstract domains for *nullity* and *well-formedness*:

 $wellFormed(x) \equiv notNil(x) \land lastEl(x).data = 0$

Reversing the list

```
list rev(list 1) {
    list *last;
    list *tmp;
    while (1->next != null){
        tmp = 1->next;
        l->next = last;
        last = 1;
        l = tmp;
    }
    return last;
}
```

```
Reversing the list
     list rev(list l) {
       list *r;
       list *t;
       while (1->next != null){
          t = 1 - next;
          l \rightarrow next = r;
          r = 1;
          1 = t;
       return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
          t = l > next;
          1 \rightarrow \text{next} = r;
          r = 1;
           1 = t;
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = l \rightarrow next;
          l > next = r;
          r = 1;
          1 = t:
       return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
          t = 1 - next;
          1 \rightarrow \text{next} = r;
          r = l;
          1 = t;
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = 1 - next;
          l \rightarrow next = r;
          r = 1;
          1 = t:
       return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
          t = l > next;
          1 \rightarrow \text{next} = r;
          r = 1;
           1 = t;
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = l \rightarrow next;
          l > next = r;
          r = 1;
          1 = t:
       return r;
```

```
Reversing the list
      list rev(list l) {
         list *r;
        list *t;
        while (1->next != null){
           t = l \rightarrow next;
           1 \rightarrow \text{next} = r;
           r = l;
           1 = t;
        return r;
```

```
Reversing the list
      list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
           t = l \rightarrow next;
           l \rightarrow next = r;
           r = 1;
          1 = t:
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = l > next;
          l \rightarrow next = r;
          r = 1;
          1 = t;
       return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = l \rightarrow next;
          l > next = r;
          r = 1;
          1 = t;
       return r;
```

```
Reversing the list
      list rev(list l) {
         list *r;
        list *t;
        while (1->next != null){
           t = l \rightarrow next;
           1 \rightarrow \text{next} = r;
           r = l;
           1 = t;
        return r;
```

```
Reversing the list
      list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
           t = l \rightarrow next;
           l \rightarrow next = r;
           r = 1;
          1 = t:
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
          t = l > next;
          1 \rightarrow \text{next} = r;
          r = 1;
           1 = t;
        return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = l \rightarrow next;
          l > next = r;
          r = 1;
          1 = t;
       return r;
```

```
Reversing the list
     list rev(list l) {
        list *r;
       list *t;
       while (1->next != null){
          t = 1 - next;
          l \rightarrow next = r;
          r = l;
          1 = t;
       return r;
```

```
Reversing the list
      list rev(list l) {
        list *r;
        list *t;
        while (1->next != null){
           t = l \rightarrow next;
           l \rightarrow next = r;
           r = 1;
          1 = t:
        return r;
```

```
Reversing the list
      list rev(list 1) {
        list *r;
        list *t;
        while (l->next != null){
           t = l \rightarrow next;
           l \rightarrow next = r;
           r = 1;
           1 = t;
        return r;
```

Reversing the list list rev(list 1) { list *r; list *t: while (1->next != null){ $t = l \rightarrow next$; $l \rightarrow next = r$; r = 1; 1 = t: return r; \Rightarrow if r is well-formed before while, it is well-formed after while as well

TYPES

FORMS

$$\langle \sqsubseteq, \mathcal{E} \rangle$$

Hierarchy of Existing Forms of Slicing


```
C
R
I VARIABLES OF
T INTEREST: V
E
R
I
O
N
```

STATIC all possible inputs

CONDITIONED some particular inputs one particular input

DYNAMIC

 \mathbf{R} Variables of Interest: V \mathbf{T} \mathbf{E} \mathbf{R} N

STATIC all possible inputs	CONDITIONED some particular inputs	Dynamic one particular input
$\mathcal{I}=\mathbb{M}$	$\varnothing\subset\mathcal{I}\subseteq\mathbb{M}$	$ \mathcal{I} = 1$
C INPUTS OF INTEREST: I I VARIABLES OF INTEREST: V E R I O N		

C INPUTS OF INTEREST: I VARIABLES OF INTEREST: V E R I O N

ITERATION COUNT only particular iterations

NON-ITERATION COUNT all iterations

8/19


```
C INPUTS OF INTEREST: I VARIABLES OF INTEREST: V

E OCCURRENCES OF INTEREST: O
N
```

KL Non - KL even different paths

8/19

Generalized Slicing Criterion

$$C = \langle \mathcal{I}, V, \mathcal{O}, \mathcal{L} \rangle,$$

where

- $\mathcal{I} \subseteq \mathbb{M}$ set of INPUTS of interest.
- V set of VARIABLES of interest.
- $\mathcal{O} \in n \times \wp(\mathbb{N})$ set of OCCURRENCES of interest,
- $\mathcal{L} \in \{true, false\}$ determines a KL form.

Generalized abstract criterion

Example

$$Var = \{x_1, x_2, x_3, x_4\}$$
 $V = \{x_1, x_2, x_3\}$
PROPERTIES OF INTEREST: SIGN² of $x_1 \times x_2$ and PAR of x_3
 $\Rightarrow \mathcal{V} = \langle \{x_1, x_2\}, \{x_3\} \rangle$ $\mathcal{A} = \langle \text{SIGN}^2, \text{PAR} \rangle$

$$SIGN^{2}(x,y) = \begin{cases} POS & \text{if } x * y > 0 \\ 0 & \text{if } x * y = 0 \\ NEG & \text{otherwise} \end{cases}$$

$$PAR(x) = \begin{cases} EVEN & \text{if } x \text{ is even} \\ ODD & \text{otherwise} \end{cases}$$

```
begin
read(n);
i:=1;
s:=0;
p:=1;
while (i<=n) do
begin
s:=s+i;
p:=p*i;
i:=i+1;
end;
write(p);
end:
```

$$\sigma = \{n \leftarrow 2\}$$

```
begin
                                                                \sigma = \{ n \leftarrow 2 \}
         read(n);
         i := 1;
         s := 0;
         p := 1;
         while (i \le n) do
         begin
           s := s + i;
           p := p * i;
           i := i + 1;
         end:
         write(s);
12
         write(p);
13
      end:
14
```

$\begin{array}{c} \textit{L-$ADDITIONAL POINTS OF INTERESTED} \\ \textit{Proj}_{(\mathcal{V},\mathcal{O},\mathcal{L},\mathcal{A})}^{\prime\alpha}(n,k,\sigma) \overset{\text{def}}{=} \left\{ \begin{array}{c} (n,\sigma \upharpoonright^{\alpha}\mathcal{V}) & \text{if } (n,k) \in \mathcal{O} \\ (n,\sigma \upharpoonright^{\alpha}\mathcal{D}) & \text{if } (n,k) \notin \mathcal{O} \land n \in \mathcal{L} \\ \lambda & \text{otherwise} \end{array} \right.$

$$\mathcal{V} = \langle \{i\}, \{s\} \rangle, \mathcal{O} = \{8\} \times \mathbb{N}, L = \{6\}, \mathcal{A} = \langle \mathsf{SIGN}, \mathsf{PAR} \rangle$$

$\begin{array}{c} \textit{L-$ADDITIONAL POINTS OF INTERESTED} \\ \textit{Proj}_{(\mathcal{V}, \mathcal{O}, L, \mathcal{A})}^{\prime \alpha}(n, k, \sigma) \overset{\text{def}}{=} \left\{ \begin{array}{c} (n, \sigma \upharpoonright^{\alpha} \mathcal{V}) & \text{if } (n, k) \in \mathcal{O} \\ (n, \sigma \upharpoonright^{\alpha} \mathcal{O}) & \text{if } (n, k) \notin \mathcal{O} \land n \in L \\ \lambda & \text{otherwise} \end{array} \right. \\ \mathcal{V} = \langle \{i\}, \{s\} \rangle, \mathcal{O} = \{8\} \times \mathbb{N}, L = \{6\}, \mathcal{A} = \langle \text{SIGN}, \text{PAR} \rangle$

$\begin{array}{c} \textit{L-$ADDITIONAL POINTS OF INTERESTED} \\ \textit{Proj}_{(\mathcal{V}, \mathcal{O}, L, \mathcal{A})}^{\prime \alpha}(n, k, \sigma) \overset{\text{def}}{=} \left\{ \begin{array}{c} (n, \sigma \upharpoonright^{\alpha} \mathcal{V}) & \text{if } (n, k) \in \mathcal{O} \\ (n, \sigma \upharpoonright^{\alpha} \mathcal{O}) & \text{if } (n, k) \notin \mathcal{O} \land n \in L \\ \lambda & \text{otherwise} \end{array} \right. \\ \mathcal{V} = \langle \{i\}, \{s\} \rangle, \mathcal{O} = \{8\} \times \mathbb{N}, L = \{6\}, \mathcal{A} = \langle \text{SIGN}, \text{PAR} \rangle$

$\begin{array}{c} \textit{L-$ADDITIONAL POINTS OF INTERESTED} \\ \textit{Proj}_{(\mathcal{V}, \mathcal{O}, L, \mathcal{A})}^{\prime \alpha}(n, k, \sigma) \overset{\text{def}}{=} \left\{ \begin{array}{c} (n, \sigma \upharpoonright^{\alpha} \mathcal{V}) & \text{if } (n, k) \in \mathcal{O} \\ (n, \sigma \upharpoonright^{\alpha} \mathcal{O}) & \text{if } (n, k) \notin \mathcal{O} \land n \in L \\ \lambda & \text{otherwise} \end{array} \right. \\ \mathcal{V} = \langle \{i\}, \{s\} \rangle, \mathcal{O} = \{8\} \times \mathbb{N}, L = \{6\}, \mathcal{A} = \langle \text{SIGN}, \text{PAR} \rangle$

$\begin{array}{c} \textit{L - Additional Points of Interested} \\ \textit{Proj}^{\prime\alpha}_{(\mathcal{V}, \mathcal{O}, L, \mathcal{A})}(n, k, \sigma) \overset{\text{def}}{=} \left\{ \begin{array}{c} (n, \sigma \upharpoonright^{\alpha} \mathcal{V}) & \text{if } (n, k) \in \mathcal{O} \\ (n, \sigma \upharpoonright^{\alpha} \mathcal{D}) & \text{if } (n, k) \notin \mathcal{O} \land n \in L \\ \lambda & \text{otherwise} \end{array} \right. \\ \mathcal{V} = \langle \{i\}, \{s\} \rangle, \mathcal{O} = \{8\} \times \mathbb{N}, L = \{6\}, \mathcal{A} = \langle \text{Sign}, \text{Par} \rangle$

ABSTRACT UNIFIED EQUIVALENCE

- P, Q executable programs,
- I_P, I_Q sets of line numbers of P and Q
- $C_A = \langle \mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}, \mathcal{A} \rangle$ abstract criterion
- $\bullet \ \mathsf{L}_{\mathcal{L}}(P,Q) = \mathcal{L} \ ? \ \mathsf{I}_{P} \cap \mathsf{I}_{Q} \ : \ \varnothing$
- P is Abstract Equivalent to Q (P $\mathcal{U}^{\mathcal{A}}(\mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}_{\mathcal{L}}, \mathcal{A})$ Q) iff

$$\forall \sigma \in \mathcal{I}.Proj^{\alpha}_{(\mathcal{V},\mathcal{O},L_{\mathcal{L}},\mathcal{A})}(T^{\sigma}_{P}) = Proj^{\alpha}_{(\mathcal{V},\mathcal{O},L_{\mathcal{L}},\mathcal{A})}(T^{\sigma}_{Q})$$

Semantic Constraint

$$\mathcal{E}_{\mathcal{A}} \stackrel{\text{def}}{=} \lambda(\mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}, \mathcal{A}). \mathcal{U}^{\mathcal{A}}(\mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}_{\mathcal{L}}, \mathcal{A})$$

 $\langle \sqsubseteq, \mathcal{E}_{\mathcal{A}} \rangle$ - Representation of Abstract Forms of Slicing

Semantic Constraint

$$\mathcal{E}_{\mathcal{A}} \stackrel{\mathsf{def}}{=} \lambda(\mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}, \mathcal{A}). \mathcal{U}^{\mathcal{A}}(\mathcal{I}, \mathcal{V}, \mathcal{O}, \mathcal{L}_{\mathcal{L}}, \mathcal{A})$$

 $\langle \sqsubseteq, \mathcal{E}_{\mathcal{A}} \rangle$ - Representation of Abstract Forms of Slicing

We have inserted Abstract Slicing in Formal Framework

Enriched Hierarchy

$\langle \sqsubseteq, \mathcal{E}_{\mathcal{A}} \rangle$ - Representation of Abstract Forms of Slicing Enriched Hierarchy

$\langle \sqsubseteq, \mathcal{E}_{\mathcal{A}} \rangle$ - Representation of Abstract Forms of Slicing Enriched Hierarchy

Slicing

...extracts from programs the statements which are *relevant* for a given behaviour.

Dependency

...defines what relevant means.

Slicing

...extracts from programs the statements which are *relevant* for a given behaviour.

Dependency

...defines what relevant means.

Example

SYNTACTIC DEF-REF :
$$\begin{cases} x := y + 2z \\ \mathbf{x} \text{ depends on } \mathbf{y} \text{ and on } \mathbf{z} \end{cases}$$

Slicing

...extracts from programs the statements which are relevant for a given behaviour.

Dependency

...defines what relevant means.

Example

SYNTACTIC DEF-REF:

$$x := y + 2z$$

x depends on y and on z

$$x := z + y - y$$

x := z + y - y**x** depends on **y** and on **z**

Slicing

...extracts from programs the statements which are relevant for a given behaviour.

Dependency

...defines what relevant means.

Example

SEMANTIC:
$$\begin{cases} x := z + y - 1 \\ 1 & \text{i.e.} \end{cases}$$

SEMANTIC: $\begin{cases} x := z + y - y \\ \mathbf{x} \text{ depends on } \mathbf{z} \text{ but it does NOT depend on } \mathbf{y} \end{cases}$

Slicing

...extracts from programs the statements which are relevant for a given behaviour.

Dependency

...defines what relevant means.

Example

SEMANTIC: $\begin{cases} x := z + y - y \\ \mathbf{x} \text{ depends on } \mathbf{z} \text{ but it does } \mathbf{NOT} \text{ depend on } \mathbf{y} \\ x := 2y \\ \mathbf{x} \text{ depends on } \mathbf{y} \end{cases}$

$$x := 2y$$

Slicing

...extracts from programs the statements which are *relevant* for a given behaviour.

Dependency

...defines what relevant means.

Example

ABSTRACT SEMANTIC (PARITY):
$$\begin{cases} x := 2y \\ \mathbf{x} \text{ does NOT depend on } \mathbf{y} \end{cases}$$

4D > 4B > 4E > 4E > 900

Slicing

...extracts from programs the statements which are relevant for a given behaviour.

Dependency

...defines what relevant means.

Example

ABSTRACT SEMANTIC (PARITY):

$$x := 2y$$

 $\begin{cases} x := 2y \\ \mathbf{x} \text{ does } \mathbf{NOT} \text{ depend on } \mathbf{y} \end{cases}$

$$x := 2y + z$$

SLICING BY PRUNING PDG

Program Dependency Graphs (PDG) are defined by two kind of edges (s_1, s_2) :

Control Flow Edge

 s_1 represents a control predicate and s_2 represents a component of the program immediately nested within the predicate s_1 ;

Flow Dependence Edge

 s_1 defines a variable x which is used in s_2 i.e., $x \in \text{def}(s_1) \cap \text{ref}(s_2)$, and x is not further defined between s_1 and s_2 :

SLICING BY PRUNING PDG

Program Dependency Graphs (PDG) are defined by two kind of edges (s_1, s_2) :

Control Flow Edge

 s_1 represents a control predicate and s_2 represents a component of the program immediately nested within the predicate s_1 ;

Flow Dependence Edge

 s_1 defines a variable x which is used in s_2 i.e., $x \in \text{def}(s_1) \cap \text{ref}(s_2)$, and x is not further defined between s_1 and s_2 ;

Flow dependence edges = DIRECT FLOWS=DEF-REF dependencies

Control flow edges = INDIRECT FLOWS

PRUNING DEPENDENCIES

Kind of dependencies

- Data dependencies (Assignments);
- Control dependencies (Control structures)

PRUNING DEPENDENCIES

Kind of dependencies

- Data dependencies (Assignments) ⇒ Direct flows;
- Control dependencies (Control structures) ⇒ Indirect flows

PRUNING DEPENDENCIES

Kind of dependencies

- Data dependencies (Assignments) ⇒ Direct flows;
- Control dependencies (Control structures) ⇒ Indirect flows

We propose a PRUNING of data dependencies!

STILL WE LOSE SOMETHING ABOUT CONTROL DEPENDENCIES!

PRUNING DEPENDENCIES

Kind of dependencies

- Data dependencies (Assignments) ⇒ Direct flows;
- Control dependencies (Control structures) ⇒ Indirect flows

Example

if
$$(y + 2x \mod 2) == 0$$
 then $w := 0$ else $w := 0$

 \Rightarrow The guard does not depend on x: OK

 \Rightarrow The variable w DOES NOT DEPEND on y: No!

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

- Incrementally find the set X of variables which are enough to determine the value of e
- X determines e if any change to other variables can be ignored (needs to go into the state space)

Slicing by abstracting CFG

- Start from a static slice of a program
- Derive an abstraction ρ from $\mathcal{C}_{\mathcal{A}}$ and construct abstract states using ρ
- Determine an abstract state graph ASG
- Abstract Slice corresponds to a pruned ASG

```
read(n);
read(s);
i := 1;
while (i<=n) do
s s := s + 2*i;
i i := i+1;
od</pre>
```


$\mathbb{M}\text{-}$ all possible inputs

$$\operatorname{Par}(x) = \left\{ \begin{array}{ll} \operatorname{EVEN} & \text{ if } x \equiv_2 0 \\ \operatorname{ODD} & \text{ otherwise} \end{array} \right.$$

 $\mathbb{M}\text{-}$ all possible inputs

$$\operatorname{PAR}(x) = \left\{ \begin{array}{ll} \operatorname{EVEN} & \text{if } x \equiv_2 0 \\ \operatorname{ODD} & \text{if } x \equiv_2 0 \end{array} \right.$$

$\mathbb{M}\text{-}$ all possible inputs

$$\mathrm{PAR}(x) = \left\{ \begin{array}{ll} \mathtt{EVEN} & \quad \mathrm{if} \ x \equiv_2 0 \\ \mathtt{ODD} & \quad \mathrm{if} \ x \equiv_2 0 \end{array} \right.$$

Block $\langle 4, 0 \rangle, \langle 5, 0 \rangle, \langle 6, 0 \rangle$ Input: s = 0 Output: s = 0 \Rightarrow we can remove it

- 1. **read**(n); 2. **read**(s);
 - 7. end

CONCLUSIONS

Putting all together

- Generalized Slicing Criteria (Traditional and Abstract versions)
- Extension of Unified Formal Framework
- Formal definition of Abstract Program Slicing
- Semantic and constructive characterization of abstract dependencies
- First steps towards an implementation of abstract program slicing

CONCLUSIONS

Limitations

- If the property used for the construction of ASG is too much abstract, the Simple Approach returns the static slice
- This approach cannot be used for the extraction of dynamic and conditional slices: Extended Approach is one possible refinement of this algorithm
- Still a lot of work to do for obtaining a real implementation
- Also the semantic and constructive characterization of abstract dependencies is still far from its use in a real implementation of abstract slicing

CONCLUSIONS

Ideas for the Future

- Improvement and implementation of proposed algorithm(s)
- Obfuscation and Watermarking vs. Abstract Slicing
- Abstract slicing for malware detection

