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Communities in Graphs

A network is said to have community structure if the nodes of the network
can be easily grouped into (potentially overlapping) sets of nodes such
that each set of nodes is densely connected internally, with few
connections to the rest of the network.
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Communities in Real World Graphs

Many real-world networks are known to have community structure.

Social networks

Biological networks

Computer networks

Not all networks have community structure e.g. random graphs
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Communities in Real World Graphs

“Graphical representation of the network of communities extracted from a Belgian mobile phone network. About 2M customers
are represented on this network. The size of a node is proportional to the number of individuals in the corresponding community
and its colour on a red-green scale represents the main language spoken in the community (red for French and green for Dutch).
Only the communities composed of more than 100 customers have been plotted. Notice the intermediate community of mixed
colours between the two main language clusters. A zoom at higher resolution reveals that it is made of several sub-communities

with less apparent language separation.”

(Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/P10008)
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Does Software have Community Structure?

It depends how you turn the software into a graph.

Consider, the graph:
G1(P) = n1 → n2 if and only if n1 and n2 are in the same function in
program P.

Clearly G1 has community structure but it’s not very interesting!

Previous work has shown community structure exists in class dependence
graphs.
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‘Interesting’ Communities in Software

We are looking for communites which reflect semantic properties of
programs.

Where do we start?

We have to choose graphs which reflect semantic properties of programs.

We then find communites in these graphs.

Finally we see if these communities reflect anything semantic.
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Slice Graphs

S(P) = n1 → n2 if and only if n2 is in the slice of P with respect to n1.

In other words, n1 → n2 if and only if n1 depends on n2 in P.

Clearly, slice graphs can be considered ‘semantic’.

Question: Do slice graphs have community structure, and if so are the
communites ‘interesting’ or ‘useful’?

Intuitively, a community in a slice graph is a part of a program where there
is strong internal inter-dependence.

Perhaps dependence communities will highlight different semantic
concerns within a program.
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Modularity

Given a partition of a network, modularity is a measure of the ‘strength’ of
the community structure of this partition.

Q =
(fraction of edges that fall
within communities in the

given graph)
−

(expected number of edges
within those communities

in the null model )
(1)

Modularity, of a weighted undirected graph, is defined as

Q =
1

2m

∑
i ,j

[
Aij − Eij

]
δ(ci , cj) (2)

where Aij is the weight of the edge incident to i and j , ki =
∑

j Aij is the
sum of the weights of the edges incident to vertex i , ci is the community
to which vertex i is assigned, δ(u, v) is 1 if i and j are in the same
community and 0 otherwise and m = 1

2

∑
i ,j Aij . Eij is the expected

number of edges between i and j in a random graph of the same degree

distribution which can be calculated as
kikj
2m .

25 / 58



Modularity

Given a partition of a network, modularity is a measure of the ‘strength’ of
the community structure of this partition.

Q =
(fraction of edges that fall
within communities in the

given graph)
−

(expected number of edges
within those communities

in the null model )
(1)

Modularity, of a weighted undirected graph, is defined as

Q =
1

2m

∑
i ,j

[
Aij − Eij

]
δ(ci , cj) (2)

where Aij is the weight of the edge incident to i and j , ki =
∑

j Aij is the
sum of the weights of the edges incident to vertex i , ci is the community
to which vertex i is assigned, δ(u, v) is 1 if i and j are in the same
community and 0 otherwise and m = 1

2

∑
i ,j Aij . Eij is the expected

number of edges between i and j in a random graph of the same degree

distribution which can be calculated as
kikj
2m .

26 / 58



Algorithms for Finding Comunities

Finding partitions with the best modularity is NP-hard but tractable
algortihms exist for aproximation best possible exist.

The Louvain method is a fast algorithm for detecting communities in large
networks based upon modularity maximisation.

The algorithm combines neighbouring nodes until a local maximum of
modularity is reached and then creates a new network of communities;
these two steps are repeated until there is no further increase in
modularity.

This creates a hierarchical decomposition of the network - at the lowest
level all nodes are in their own community, and at the highest level nodes
are in communities which gives the highest gain in modularity.

This technique is simple, fast and has good accuracy and has been tested
on networks with millions of vertices/edges.
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Example of Communities in the Slice Graph:
Sum/Product

int main() {

const int N = 10;

int sum = 0;

int product = 1;

int i = 1;

while(i < N) {

sum = sum + i;

product = product * i;

i = i + 1;

}

printf("%d\n", sum);

printf("%d\n", product);

}
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Example of Communities in the Slice Graph:
Word Count Program

It separates out the code that does the counting from the code that does
the I/O.
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More Examples of Communities in the Slice Graph

GNU Chess: frontend, adapter and engine

GNU bc: parser, calculator

GNU robots: many communities due to low coupling
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Applications - Detecting Dynamic Watermarks in Java
Code

The red bits are the dynamic watermark we injected.

38 / 58



Applications - Detecting Dynamic Watermarks in Java
Code

The red bits are the bits of the watermark discovered by the communites
algorithm.
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Dependence Clusters vs. Dependence Communities

A Dependence cluster is a maximal set of mutually dependent vertices i.e.
a maximal clique in the slice graph.

Finding maximal cliques is also NP-Hard.

A clique is a fully connected subgraph. This may be an overly strict
requirement (Harman et al.).

Perhaps Dependence Communites are a ‘good enough’ approximation for
what is required for Dependence Clusters.
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Dependence Clusters vs. Dependence Communities

Because it is hard to compute Dependence Clusters, they approximate by
saying:

two nodes are in the same Dependence Cluster if and only if they
have the same slice.

These are cliques, but not, in general, maximal ones.

It turns out that, If we apply the
Louvain algorithm to the same
graphs we get a partition with
higher modularity. In other words it
produces ‘clusters’ with a stronger
‘internal inter-dependence’ than
those produced by Harman’s
approximation.
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What does this mean?

It could be argued, therefore, that Dependence Communites may be a
better approximation to Dependence Clusters.

. . . or at least a better approximation to the properties of programs that
authors are trying to capture using Dependence Clusters!
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Programs with Large Dependence Clusters are bad!

Is there a correlation betwen large Dependence Clusters and Large
Dependence Communities?

R = 0.8, p < 0.00001
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Conclusions

We have introduced the concept of Dependence Communites.

We find these by using an algorithm that attempts to partition the slice
graph in order maximise the modularity.

There is a strong correlation between Dependence Communities and
Dependence Clusters.

Programs that we investigated have a positive but, in most cases, not high
modularity.

Programs that we investigated have a positive but, in most cases, not high
modularity.

Dependence Communities reflect semantic properties of a program.
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Thanks

Thanks for listening.

Any questions?
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