
Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Hoare-like Logics for Verifying and
Inferring Conditional Information Flow

Torben Amtoft & Anindya Banerjee & John Hatcliff
& Edwin Rodŕıguez & Joey Dodds & . . .

Kansas State University

19th CREST Open workshop, May 1, 2012

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Dependency and Non-Interference

Consider command C
z := x + y

Dependency perspective:

the value of z after executing C
depends only on (at most) x,y

Non-interference perspective:

if two stores agree on x,y before C
then they will agree on z after C

Expressed as triple in Hoare-like logic:

{xn, yn} C {zn}

where n introduces a two-store assertion:

s1&s2 |= En iff [[E]]s1 = [[E]]s2

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Semantics of Hoare Triples

A Hoare-triple {Θ} C {Θ′} with 2-assertions denotes:

if s1&s2 |= Θ
and s1 [[C]] s ′1
and s2 [[C]] s ′2
then s ′1&s ′2 |= Θ′

This is termination-insensitive:

I if C loops on s1 and/or on s2
I then correctness holds vacuously.

To get termination sensitivity, one might introduce ⊥n:

{xn} C {⊥n}

would then say that if s1(x) = s2(x) then either

1. C terminates on s1 and on s2, or

2. C loops on s1 and on s2

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Conditional Dependencies

Now consider command

if B then z := x else z := y

In terms of noninterference: two stores will end up
agreeing on z if they

1. agree on B

2. agree on x when B is true

3. agree on y when B is false

This may be expressed as the 2-assertion Hoare triple:

{Bn, B ⇒ xn, ¬B ⇒ yn} C {zn}

Semantics of a conditional assertion:

s1&s2 |= φ⇒ En iff s1 |= φ, s2 |= φ implies [[E]]s1 = [[E]]s2

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Inference Algorithm

Goal:

1. given command

2. given postcondition (often unconditional)

3. infer precondition that yields correct Hoare triple

Applications:

I derive (procedure) contracts

I check user-supplied contract:
does given precondition entail inferred precondition?

The inferred precondition is not necessarily the weakest:

I loops are approximated

I for procedures, summaries are consulted

I . . . ?

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Assignments

For assignment x := E , as in standard Hoare Logic, the
(weakest) precondition is found by substituting E for x in
postcondition

Θ y + z > 7⇒ wn

Θ′ x > 7⇒ wn

x := y + z

w > 5⇒ (y + z)n

w > 5⇒ xn

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Special Case: Conclusion Not Modified

When C does not modify z , consider the triple

{φ⇒ zn} C {φ′ ⇒ zn}

For this to be valid, it must hold that:

I if post-stores are forced to agree on z

I then also pre-stores must be forced to agree on z

which amounts to φ satisfying

∀s, s ′ : if s [[C]] s ′ and s ′ |= φ′ then s |= φ

This kind of resembles saying φ = wp(C , φ′)

I but the direction is backwards

I and approximation is upwards: φ = true is safe

We call this Necessary PreCondition (NPC)

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Conditionals

if y > 5

x := w z := v

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Conditionals

if y > 5

x := w z := v

v > 3⇒ wn

v > 3⇒ wn

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Conditionals

if y > 5

x := w z := v

z > 3⇒ wn

(z > 3 ∧ y > 5) ∨ (v > 3 ∧ y ≤ 5)⇒ wn

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Conditionals

if y > 5

x := w z := v

z > 7⇒ xn

z > 7⇒ wn v > 7⇒ xn

z > 7 ∧ y > 5⇒ wn v > 7 ∧ y ≤ 5⇒ xn
(z > 7 ∧ y > 5) ∨ (v > 7 ∧ y ≤ 5)⇒ (y > 5)n

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Context

I Part of our work was motivated by a larger industrial
collaboration effort with Rockwell Collins

I Rockwell Collins is developing multiple product lines
of embedded information security devices following
the MILS architecture

I Code size is relatively small (3-5K LOC) and
confined to a particular style: a lot of buffer
processing, copying, filtering

I These products must be certified and secure
information flow and separation policies are primary
concerns

I Each of these products has critical subsystems code
in SPARK, a safety-critical subset of Ada that is
suitable for formal reasoning (no heap)

I SPARK information flow contracts are being used to
support certification cases

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Assessment

I Existing Praxis tools check these contracts
(recent KSU tools also infer them)

I While valuable, they are often too imprecise to
describe realistic policies

I to verify more complex information flow properties,
Rockwell Collins engineers previously manually
constructed more precise verification models in the
ACL2 theorem prover

Our work on conditional information flow thus has the
potential to

I extend the expressiveness of SPARK info flow
contracts to allow more precise reasoning at the
source code level

I significantly increase the automation of constructing
and checking information flow contracts

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Arrays

I Since SPARK has no heap, all complex data
structures are coded as arrays.

I Yet arrays were analyzed as atomic entities
(all flows are merged):

I an update to A[q] is treated as an update to A
(all elements of A)

I no way to say that, e.g., information at odd indices
only flows to other odd index positions

I We want to reason about individual array elements.
I for assignment A[Q] := E , as in standard Hoare

Logic [Gries], the precondition is found by
substituting A{Q : E} for A in postcondition.

I One can then simplify (and strengthen) the resulting
precondition:

Pre: x = y ⇒ wn, x 6= y ⇒ A[y]n, (x = y)n
A[x] := w

Post: A[y]n

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Loops

Always possible to make crude approximation:

1. consider arrays to be atomic entities

2. Iterate over assertions φx ⇒ xn, weakening the
antecedents

3. Use widening to ensure convergence
(worst case: each φx becomes true)

But for certain for loops we can do better:

I many applications have loops that process elements
independently of each other

I we can handle such loop in uniform way, by
processing once with special symbolic variables that
range over index values of variables, and then
generalize (universally quantify)

I exists checks to detect loop-carried dependencies,
but such tests can actually be expressed within our
logic, by examining preconditions

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

For Loops, Simple Examples

–#derives
–# forall u in {1..n}:
–# A[u] from A[u+1]
–#and
–# forall u notin {1..n}:
–# A[u] from A[u]
for q ← 1 to n loop

A[q] := A[q+1]
end loop

I not parallelizable

I but no loop-carried
dependency

I precise analysis

–#derives A from *
for q ← 1 to n loop

A[q] := A[q-1]
end loop

I not parallelizable

I and loop-carried
dependency

I crude analysis

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing For Loops (w/o Loop-Carried Deps)

for q ← 1 to m
t := A[q]; A[q] := A[q + m]; A[q + m] := t

Find preconditions Θ for loop body B:

{A[q + m]n} B {A[q]n}, {A[q]n} B {A[q + m]n}

We can now generate preconditions for A[u]n
u ∈ {1..m} ⇒ A[u + m]n
u ∈ {m + 1..2m} ⇒ A[u −m]n
u /∈ {1..2m} ⇒ A[u]n

Requirements that must be fulfilled:

1. q and q + m not modified by loop body
2. No loop carried dependendies

I on scalars: nothing in Θ modified except A
I on array locations: cannot be read after being

updated (this can be expressed precisely)

3. “inverses” (relating u and q + m) do exist

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Correctness Proof

Automatically verified in Coq by Joey Dodds

I for the basic constructs: assignments, assertions,
conditionals

I almost for while loops

I not yet for for loops

First approach:

I write a precondition analysis that generates witnesses

I prove in Coq that if a witness type checks with type
{Θ} C {Θ′} then this is indeed a semantially correct
Hoare triple

Second approach: write the precondition generater inside
Coq, and prove that it always generates correct evidence.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Procedure Calls

Assume procedure p has contract

derives A[u]
from z when u = x
from B[u] when u 6= x
from x

and w from z

y > 0 ∧ 7 = x ⇒ zn
y > 0 ∧ 7 6= x ⇒ B[7]n
y > 0⇒ xn

y > 0⇒ A[7]n

call p

true ⇒ ynz > 7⇒ yn

w > 8⇒ yn

if w = zold + 1

In the absence of functional contracts, experiments show
significant precision loss.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Procedure Calls

Assume procedure p has contract

derives A[u]
from z when u = x
from B[u] when u 6= x
from x

and w from z

y > 0 ∧ 7 = x ⇒ zn
y > 0 ∧ 7 6= x ⇒ B[7]n
y > 0⇒ xn

y > 0⇒ A[7]n

call p

true ⇒ ynz > 7⇒ yn

w > 8⇒ yn

if w = zold + 1

In the absence of functional contracts, experiments show
significant precision loss.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Procedure Calls

Assume procedure p has contract

derives A[u]
from z when u = x
from B[u] when u 6= x
from x

and w from z

y > 0 ∧ 7 = x ⇒ zn
y > 0 ∧ 7 6= x ⇒ B[7]n
y > 0⇒ xn

y > 0⇒ A[7]n

call p

true ⇒ yn

z > 7⇒ yn

w > 8⇒ yn

if w = zold + 1

In the absence of functional contracts, experiments show
significant precision loss.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Procedure Calls

Assume procedure p has contract

derives A[u]
from z when u = x
from B[u] when u 6= x
from x

and w from z

y > 0 ∧ 7 = x ⇒ zn
y > 0 ∧ 7 6= x ⇒ B[7]n
y > 0⇒ xn

y > 0⇒ A[7]n

call p

true ⇒ yn

z > 7⇒ yn

w > 8⇒ yn

if w = zold + 1

In the absence of functional contracts, experiments show
significant precision loss.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Analyzing Procedure Calls

Assume procedure p has contract

derives A[u]
from z when u = x
from B[u] when u 6= x
from x

and w from z

y > 0 ∧ 7 = x ⇒ zn
y > 0 ∧ 7 6= x ⇒ B[7]n
y > 0⇒ xn

y > 0⇒ A[7]n

call p

true ⇒ yn

z > 7⇒ yn

w > 8⇒ yn

if w = zold + 1

In the absence of functional contracts, experiments show
significant precision loss.

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Related Work

I Conditional declassification [Banerjee & Naumann &
Rosenberg]

I Path conditions in program dependence graphs
[Hammer, Krinke, Snelting etc]

I Type systems for information flow

I Work on SPARK information flow [Bergeretti &
Carre; Chapman & Hilton]

I Information flow verification by self-composition

Conditional Information
Flow

Amtoft et al

2-Assertion Logic

Inference Algorithm

Applications

Loops and Arrays

Foundations and
Limitations

Conclusion

Comparison to Self-Composition

{xn} y := x + 2; w := y + 3 {wn}

is equivalent to (using primes for fresh copies)

{x = x ′}
y := x + 2; w := y + 3
y ′ := x ′ + 2; w ′ := y ′ + 3

{w = w ′}

which may be checked by tool for standard safety analysis.

I must find intermediate assertions like {w = x ′ + 5}
I in general, need to find f such that {w = f (x ′)}
I for more complex dependencies, that may not be

feasible unless the safety analysis “knows” that the
program is generated by self-composition

I For good results, one therefore must combine with
security static analysis [Terauchi/Aiken, SAS’05]

	2-Assertion Logic
	Inference Algorithm
	Applications
	Loops and Arrays
	Foundations and Limitations
	Conclusion

