
Multiplicity Computing 
 

Engineering Software for 
Reliability, Performance, and Security 

Alexander Wolf 
Department of Computing 
Imperial College London 

in collaboration with Cristian Cadar, Paolo Costa, and Peter Pietzuch 



from Bordeaux et al., 2009 

An inspiring example 
 

Solving “hard” computational problems 
 Idea: run multiple instances of a SAT solver, each 

using a different parameter setting 
 MiniSAT [Bordeaux et al., 2009]; ManySAT [Hamadi et al., 2009] 

 Result: 128-core 
MiniSAT solves 55% 
more problems 

 Result: ManySAT wins 
parallel SAT track at 
SAT-Race 2008 and 
SAT-Competition 2009 



Another inspiring example 
 

 Improving reliability 
 Idea: “speculate” execution in different environments 

 roll back on error; rerun in modified environment 
 Rx [Qin et al., 2007] 

 Result: certain hidden faults avoided in MySQL, 
Apache, CVS, ... 

from Qin et al., 2007 



Yet another inspiring example 
 

Avoiding memory exploits 
 Idea: obfuscate addresses by randomizing memory 

layout in execution stack 
 [Bhatkar et al., 2003] 

 Result: success 
in defending 
against many 
kinds of buffer 
overflow attacks 

from Bhatkar et al., 2003 



What do we learn from these examples? 

 Improvement achieved through diversity 
Good behaviors can emerge from randomness 
Run-time techniques sometimes better than 

design-time techniques 
Good choices are situated in context of use 
Sometimes easier to detect good/bad 

behaviors than to predict them 
Opportunity to exploit parallelism for non-

parallel applications 



An uninspiring example 
 

N-version programming 
 Idea: programmers independently design/build to 

same spec, thereby avoiding common-mode failures 
 [Chen and Avizienis, 1977] 

 Result: shown to work 
in some special cases, 
but in general fails to 
achieve statistical 
independence 
 [Knight and Levenson, 1986] 

from Chen and Avizienis, 1977 (reprinted 1995) 



What do we learn from this example? 

Need much richer sources of diversity 
Need to automate creation of variants 
Need good understanding of statistical 

properties of variants 
Need some sort of specification or other 

source for constructing oracles 



Multiplicity computing 
Cadar, Pietzuch, and Wolf, 2010 

Tools, techniques, architectures, and 
languages for exploiting and managing 
diversity-based system execution 

 design issues 
– finding exploitable diversity 
– automated creation of 

variants 
– design methods and 

architectures 

 execution issues 
– run-time infrastructure for 

managing and executing 
variants 

– platform for managing 
resources 



Many potential sources of diversity 

Code Environment 
Code mutations Configuration parameters 
Data structure choice Communication topologies 
Library choice Scheduling 
Peep-hole transformations Memory layout 
GA transformations Garbage collection 
Symbolic execution Message re-orderings 
Computational precision Time delays 



Resources are not the issue 
multiplicity of computation, communication, and storage 

credit:: Passion Pictures (UK) 
http://www.passion-pictures.com/ 



So what are the issues? 

Automatically generating variants 
Understanding statistical properties 
Managing lifetimes 
Managing resources 
Managing state, side effects, and interactions 
Developing reliability, performance, and 

security oracles 
Giving illusion of a single instance, even when 

multiple variants are executed (a “virtual app”) 



What are some applications? 

Staged deployment 
 In vivo (in situ?) experimentation/testing 
Optimal (parameter) tuning 
Patch selection/validation 
High-level speculative execution 



Summing up 

Multiplicity computing continues shift of 
software engineering from a development-time 
activity to a run-time activity 

From absolute properties to “propabilities” 
Parallel execution for the other 99% 
Requires contributions from many disciplines 

– traditional and search-based software engineering, 
distributed middleware and operating systems, 
programming languages and run-time systems, 
evolutionary programming, ... 


	Multiplicity Computing��Engineering Software for�Reliability, Performance, and Security
	An inspiring example�
	Another inspiring example�
	Yet another inspiring example�
	What do we learn from these examples?
	An uninspiring example�
	What do we learn from this example?
	Multiplicity computing�Cadar, Pietzuch, and Wolf, 2010
	Many potential sources of diversity
	Resources are not the issue�multiplicity of computation, communication, and storage
	So what are the issues?
	What are some applications?
	Summing up
	Multiplicity Computing��Engineering Software for�Reliability, Performance, and Security

