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from Bordeaux et al., 2009 

An inspiring example 
 

Solving “hard” computational problems 
 Idea: run multiple instances of a SAT solver, each 

using a different parameter setting 
 MiniSAT [Bordeaux et al., 2009]; ManySAT [Hamadi et al., 2009] 

 Result: 128-core 
MiniSAT solves 55% 
more problems 

 Result: ManySAT wins 
parallel SAT track at 
SAT-Race 2008 and 
SAT-Competition 2009 



Another inspiring example 
 

 Improving reliability 
 Idea: “speculate” execution in different environments 

 roll back on error; rerun in modified environment 
 Rx [Qin et al., 2007] 

 Result: certain hidden faults avoided in MySQL, 
Apache, CVS, ... 

from Qin et al., 2007 



Yet another inspiring example 
 

Avoiding memory exploits 
 Idea: obfuscate addresses by randomizing memory 

layout in execution stack 
 [Bhatkar et al., 2003] 

 Result: success 
in defending 
against many 
kinds of buffer 
overflow attacks 

from Bhatkar et al., 2003 



What do we learn from these examples? 

 Improvement achieved through diversity 
Good behaviors can emerge from randomness 
Run-time techniques sometimes better than 

design-time techniques 
Good choices are situated in context of use 
Sometimes easier to detect good/bad 

behaviors than to predict them 
Opportunity to exploit parallelism for non-

parallel applications 



An uninspiring example 
 

N-version programming 
 Idea: programmers independently design/build to 

same spec, thereby avoiding common-mode failures 
 [Chen and Avizienis, 1977] 

 Result: shown to work 
in some special cases, 
but in general fails to 
achieve statistical 
independence 
 [Knight and Levenson, 1986] 

from Chen and Avizienis, 1977 (reprinted 1995) 



What do we learn from this example? 

Need much richer sources of diversity 
Need to automate creation of variants 
Need good understanding of statistical 

properties of variants 
Need some sort of specification or other 

source for constructing oracles 



Multiplicity computing 
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Tools, techniques, architectures, and 
languages for exploiting and managing 
diversity-based system execution 

 design issues 
– finding exploitable diversity 
– automated creation of 

variants 
– design methods and 

architectures 

 execution issues 
– run-time infrastructure for 

managing and executing 
variants 

– platform for managing 
resources 



Many potential sources of diversity 

Code Environment 
Code mutations Configuration parameters 
Data structure choice Communication topologies 
Library choice Scheduling 
Peep-hole transformations Memory layout 
GA transformations Garbage collection 
Symbolic execution Message re-orderings 
Computational precision Time delays 



Resources are not the issue 
multiplicity of computation, communication, and storage 

credit:: Passion Pictures (UK) 
http://www.passion-pictures.com/ 



So what are the issues? 

Automatically generating variants 
Understanding statistical properties 
Managing lifetimes 
Managing resources 
Managing state, side effects, and interactions 
Developing reliability, performance, and 

security oracles 
Giving illusion of a single instance, even when 

multiple variants are executed (a “virtual app”) 



What are some applications? 

Staged deployment 
 In vivo (in situ?) experimentation/testing 
Optimal (parameter) tuning 
Patch selection/validation 
High-level speculative execution 



Summing up 

Multiplicity computing continues shift of 
software engineering from a development-time 
activity to a run-time activity 

From absolute properties to “propabilities” 
Parallel execution for the other 99% 
Requires contributions from many disciplines 

– traditional and search-based software engineering, 
distributed middleware and operating systems, 
programming languages and run-time systems, 
evolutionary programming, ... 
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