Engineering Software for
Reliability, Performance, and Security

Alexander Wolf
Department of Computing
Imperial College London

In collaboration with Cristian Cadar, Paolo Costa, and Peter Pietzuch



e exampe T —

¢ Solving “hard” computational problems

¢ Ildea: run multiple instances of a SAT solver, each
using a different parameter setting
MIniISAT [Bordeaux et al., 2009]; I\/IanySAT [Hamadi et al., 2009]

¢ Result: 128-core

MInISAT solves 55%
more problems

¢ Result: ManySAT wins

parallel SAT track at

SAT

-Race 2008 and
SAT

-Competition 2009

=
2
[=]
0
w0
o
g
5
w0
=
is]
1
D
L
E
=
=

1 1 1 1 1 |
100 200 300 400 500 E-DD 700 800
Runtime (seconds)

from Bordeaux et al., 2009



¢ Improving reliability
¢ ldea: “speculate” execution Iin different environments

roll back on error; rerun in modified environment
RX [Qin et al., 2007]

¢ Result: certain hidden faults avoided in MySQL,
Apache, CVS, ...

from Qin et al., 2007



¢ Avoiding memory exploits

¢ ldea: obfuscate addresses by randomizing memory

layout in execution stack
[Bhatkar et al., 2003]

& Result: success

in defending PATRIRAGY paddin g
against many ——

. previous hase pointer Ameters
kinds of buffer | -

return address

padding

Ove rfl OW attaC kS previous base pointer

local vanahles local vanahles

from Bhatkar et al., 2003



UUH&! 50 WeE ‘earn ‘rom !Hese examp‘es !

¢ Improvement achieved through diversity
¢ Good behaviors can emerge from randomness

¢ Run-time techniques sometimes better than
design-time technigques

& Good choices are situated In context of use

¢ Sometimes easier to detect good/bad
behaviors than to predict them

¢ Opportunity to exploit parallelism for non-
parallel applications



CAnunmspingexample T .

¢ N-version programming

¢ ldea: programmers independently design/build to

same spec, thereby avoiding common-mode failures
[Chen and Avizienis, 1977]

¢ Result: shown to work @ S @

IN some special cases, SEhvicE REQuIRED~L |
but In general fails to ENIS3~ EMECK POINI

ingeneral | CONDETION
achieve statistical

. !TEEHIHATIHG CONDITION
independence SATISFIED @
[Knight and Levenson, 1986]

Figure 1 State Transitions of a Versien

from Chen and Avizienis, 1977 (reprinted 1995)



‘What do we learn from this example?

¢ Need much richer sources of diversity
¢ Need to automate creation of variants

¢ Need good understanding of statistical
properties of variants

¢ Need some sort of specification or other
source for constructing oracles



‘Multiplicity computing

Cadar, Pietzuch, and Wolf, 2010

¢ Tools, techniques, architectures, and
languages for exploiting and managing
diversity-based system execution

Application

Application

¢ design Issues ¢ execution issues
— finding exploitable diversity — run-time infrastructure for
_ automated creation of managing and executing
variants variants
_ design methods and - platform for managing

architectures resources



Code

Environment

Code mutations

Configuration parameters

Data structure choice

Communication topologies

Library choice

Scheduling

Peep-hole transformations

Memory layout

GA transformations

Garbage collection

Symbolic execution

Message re-orderings

Computational precision

Time delays




multiplicity of computation, communication, and storage

Federated Data Centers

J ._""-—- l I .
] . . L Centers
Ines
rocessors
= ores

T
: -
r credit:: Passion Pictures (UK)

http://www.passion-pictures.com/



¢ Automatically generating variants

¢ Understanding statistical properties

¢ Managing lifetimes

¢ Managing resources

¢ Managing state, side effects, and interactions

¢ Developing reliability, performance, and
security oracles

¢ Giving illusion of a single instance, even when
multiple variants are executed (a “virtual app”)



¢ Staged deployment

¢ In vivo (In situ?) experimentation/testing
¢ Optimal (parameter) tuning

¢ Patch selection/validation

¢ High-level speculative execution



M

¢ Multiplicity computing continues shift of
software engineering from a development-time
activity to a run-time activity

¢ From absolute properties to “propabilities”
¢ Parallel execution for the other 99%

¢ Requires contributions from many disciplines

— traditional and search-based software engineering,
distributed middleware and operating systems,
programming languages and run-time systems,
evolutionary programming, ...



	Multiplicity Computing��Engineering Software for�Reliability, Performance, and Security
	An inspiring example�
	Another inspiring example�
	Yet another inspiring example�
	What do we learn from these examples?
	An uninspiring example�
	What do we learn from this example?
	Multiplicity computing�Cadar, Pietzuch, and Wolf, 2010
	Many potential sources of diversity
	Resources are not the issue�multiplicity of computation, communication, and storage
	So what are the issues?
	What are some applications?
	Summing up
	Multiplicity Computing��Engineering Software for�Reliability, Performance, and Security

