
Multiple Views on Multiplicity Computing:

Opportunities Viewed through a Cyber-Security Lens

 CREST Workshop

Rick Schantz, Partha Pal, Aaron Paulos,

Joe Loyall, Kurt Rohloff

Distributed Systems Technology Group

March 23, 2012

1982: R&D Computing Landscape

2

Multiplicity emerging …

1982: Heterogeneity, Specialization

 Among Plenty (or so it seemed at the time)

3

1990s Integrated Adaptive System Concept

System-wide

 QoS

Distribution Middleware

QoS

Network QoS

Common Middleware
Services QoS

Operating System

QoS

Application or
Domain-specific

QoS
Contract

QoS Adaptive Control
Contract

QoS Adaptive Control Contract

QoS Adaptive Control

ACE/TAO RT ORB

ACE/TAO RT ORB

ACE/TAO RT ORB

IntServ/RSVP

Operating

System

IntServ/RSVP

Operating

System

IntServ/RSVP

Operating

System

IntServ/RSVP

Operating

System

IntServ/RSVP

Operating

System

IntServ/RSVP

Operating

System

Contract

QoS Adaptive Control

Contract

QoS Adaptive Control

ACE/TAO RT ORB

ACE/TAO RT ORB

Dynamic Quality of Service is a Key Aspect of Mission

Critical Distributed Systems

• Capture QoS aspects
of mission
requirements

• Effectively utilize
available resources
for mission
effectiveness

• Manage the resources
that could become
bottlenecks

• Mediate conflicting
demands for resources

• Dynamically reallocate
as conditions change

QoS management for distributed
systems strives to provide a
predictable high level of mission
effectiveness and user
satisfaction within available
resources.

5

U
ti
lit

y

Resources

Gracefully
handle degraded
and hostile situations

Effectively
utilize resources

Allocating Resources According to Utility

• How to determine mission
utility?

• Each mission has multiple
sets of tasks called
application strings.

– Take weighted sum of string
utilities

– Weighting for relative
importance of strings.

• String utility

• Quality of Service Factors:
– Timeliness

– Availability

– Quality

– Throughput

s

j

N

i

s

j

m

i UAwUA
i





1

System
Utility

Mission
Utility

Mission
Utility

Mission
Utility

String
Utility

String
Utility

String
Utility

),,,(ThqaTFUAsj 

• Maximize end-user value!

• Dynamically adjust resource

allocation.

-Continuous end-to-end

improvement.

-Robust to variations in

system behavior.

-Maximize utility across

deployed missions.

-Gracefully handle resource

failures.

Information

Supplier/

Consumer

Information

Supplier/

Consumer

Multi-Layered End-to-End QoS

Management
End-to-end QoS management must

– Manage all the resources that can affect QoS, i.e.,

anything that could be a bottleneck at any time

during the operation of the system (e.g., CPU,

bandwidth, memory, power, sensors, …)

– Shape the data and processing to fit the available

resources and the mission needs

• What can be delivered/processed

• What is important to deliver/process

– Includes capturing mission requirements,

monitoring resource usage, controlling resource

knobs, and runtime reallocation/adaptation

Information

Supplier
Information

Consumer
Network

Control and Monitor CPU Processing
– CPU Reservation or CPU priority and scheduling

– Have versions that work with CPU broker, RT CORBA, RTARM

Control and Monitor Network Bandwidth
– Set DiffServ CodePoints (per ORB, component server, thread, stream, or message)

– Work with DSCP directly or with higher level bandwidth brokers

– Priority-based (Diffserv) or reservation-based (RSVP)

Dynamic QoS realized by
• Assembly of QoS components
• Paths through QoS components
• Parameterization of QoS components
• Adaptive algorithms in QoS components

Coordinated QoS Management

Shape and Monitor Data and Application Behavior
– Shape the data to fit the resources and the requirements

– Insert using components, objects, wrappers, aspect weaving, or intercepters

– Library that includes scaling, compression, fragmentation, tiling, pacing, cropping,

format change

System resource managers
allocate available resources
based on mission requirements,
participants, roles, and priorities

Local resource managers decide
how best to utilize the resource
allocation to meet mission
requirements

QoS Administration

Information Services
QoS Manager (ISQM)

QoSPolicyContext; PreferenceContext

Policy actions

Task Manager
LQM Service

Task queues

Insert task

Extract task

Get thread

to assign

to task

Thread Pool

Info instances

Client IDs

(broker, filter, read IO only)

Insert

info

Extract

info

Pluggable Policy
Store

Authent. token;

Orchestration

instance

Policy

QoS Context

Context attributes

Task Creation

Operation

task object

Operation

Client

Diss. queues

Status

information

Metrics

Xlayer

QoS Context

Information

instance

(via Information

Channel)

Bandwidth
Manager

BW allocation

Parsed policy
values

Mission ManagementQoS Display

Dissem. Mgr
LQM Service

Client

Monitoring
Service

Task (Broker,

Read Info, Filter,
Query, Archive)

Rate Limiting
Control

Client

Status
information

Submission Mgr
LQM Service

Information
instance
(via Information
Channel)

Filter Mgr

2000s Multi-Layered QoS Management for Service-Oriented

Distributed Information Systems

QoS Administration

Aggregate QoS

Management

Local QoS

Management

QoS

Mechanisms

Mission-level QoS policies

• Roles, importance, deadlines,

user prefs.

Mission-level QoS policies

• Roles, importance, deadlines,

user prefs.

QoS enforcement

mechanisms

• Differentiated service

• Thread and queue control

• Rate control, compression,

filtering, replacement

QoS enforcement

mechanisms

• Differentiated service

• Thread and queue control

• Rate control, compression,

filtering, replacement

QoS management across

multiple users

• Fairness, resource

allocations, importance

QoS management across

multiple users

• Fairness, resource

allocations, importance

Enforce QoS policies at

local decision points

• Priorities of operations and

information

• Resource access and

process/info shaping

Enforce QoS policies at

local decision points

• Priorities of operations and

information

• Resource access and

process/info shaping

From Protection to Auto-Adaptive to

Survivable and Self-Regenerative Systems
No system is perfectly secure– only adequately

secured with respect to the perceived threat.

Prevent Intrusions Prevent Intrusions
(Access Controls, Cryptography,

 Trusted Computing Base)

1st Generation: Protection

Cryptography
Trusted Computing

Base

Access Control &

Physical Security

Detect Intrusions, Limit Damage
(Firewalls, Intrusion Detection Systems,

Virtual Private Networks, PKI)

2nd Generation: Detection

But intrusions will occur

Firewalls

Intrusion

Detection

Systems

Boundary

Controllers VPNs PKI

 But some attacks will succeed

Tolerate Attacks Tolerate Attacks
(Redundancy, Diversity, Deception,

Wrappers, Proof-Carrying Code,

Proactive Secret Sharing)

3rd Generation: Intrusion Tolerance and Survivability

Intrusion

Tolerance

Big Board View of

Attacks

Real-Time Situation

Awareness

& Response

Graceful

Degradation

Hardened

Operating

System

9

Survivability and Intrusion Tolerance

Premise
•The number & sophistication of cyber

attacks is increasing – some of these

attacks will succeed

Philosophy
•Operate through attacks by using a

 layered defense-in-depth concept

• Accept some degradation

• Protect (C,I, A) of most valuable

assets (information, services, …)

• Move faster than the intruder

Approach
• “Defense Enabling” Distributed

Applications

• Survivability architecture

Detect

Attacks

Protect React

•Exploring beyond degradation-- regain, recoup, regroup and even improve

• Semi-automated: Survivability architecture captures a lot of low level (and sometimes

uncertain and incomplete) information – utilizes advanced reasoning and machine learning 10

Slowly Advancing from Defending to Tolerance to

Survivability toward Regeneration

11

Self-Regenerative

Survivable systems

Survivable and Secure Systems

Adaptive

Distributed

Object

Middleware

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 1999 1998 1997

DARPA

AFRL

DHS/HSARPA

AQuA

OIT

APOD: Applications that
Participate In Their Own Defense

ITUA: Intrusion Tolerance
Through Unpredictable Adaptation

DPASA: Designing Adaptation
And Protection into a

Survivability Architecture

QuOIN

CSISM*

Red Team Assessments

*Cognitive Support for Intelligent Survivability Mgmt

Unpredictability Unpredictability

Byzantine FT Byzantine FT

Survivability
Architectures
and

Survivability
Architectures
and IMSes

Cognitive Survivability Management Cognitive Survivability Management

Autonomic
Defense
Autonomic
Defense

Defense
Enabling
Defense
Enabling

Focus Area

APS: Advanced
Protected Services

2010 2011 2012

Survivable
SOA
Systems

Survivable
SOA-based
Systems

Achievements So Far (2009)

Military (USAF) Joint Battlespace Infosphere (JBI)

information management system exemplar made

survivable and subjected to sustained attacks over

several weeks by multiple independent red teams

Results
• The system survived 75% of attacks

• Of those that succeeded,
• Average time to failure was 45 minutes

• Vs. immediately in the unprotected system

• Minimum of 10 minutes to failure

• Required combinations of attacks

• Adaptive defenses added 5-20%

overhead to call latency

Challenge: Develop automated mechanism that would interpret

the reports and decide the effective course of action

CSISM Approach: 3 level decision making- reactive,

deliberate and learned; use theorem proving and

coherence to reason about accusatory and evidentiary

information contained in reported events

Results
• Possible to minimize expert involvement

• Reasoning about accusatory and evidentiary

information wrt encoded knowledge
• Made correct decision in ~75% cases in red

team exercises

• Compute intensive

• Integrating learned responses online needs

additional research
12

Elements of Cyber-Defensive Ideas

• Common threads that runs through our intrusion

tolerance and survivability work:

– Adaptation for security

• Like in nature, services migrate; change behavior, structure

and configuration in order to survive

– Unpredictability

• Changing and taking unexpected actions yield advantages

– Intelligent behavior

• Like high order life forms, cognitive capabilities are

introduced to survivable systems for interpreting reported

events and making decisions

– Evolution

• Learning to improve defenses over time

13

Slide courtesy Dr. Howard Shrobe, DARPA

2010 DARPA CRASH PROGRAM

Slide courtesy Dr. Howard Shrobe, DARPA

Advanced Adaptive Applications (A3)

Key Objectives

• An execution environment supporting innately

and adaptively resilient applications

– The protected application is harder to attack, harder

to make unavailable, and harder to repeat past

successful attacks

– Isolation from other computation, dedicated to the

survival of the protected application

– Reusable, cost-effective defense near the application

and part of defense in depth strategy

 Demonstrate application centric adaptation for

survival – make the “application” survivable and

resilient against novel attacks

16

The A3 Vision: Integration of 3 Concepts

17

Host hardware layer Host hardware layer
OS layer OS layer

App App

3. Advanced State Management for

containerized applications to enable various

forms of restarts (recovery-focused adaptation)

Containerization to isolate application execution

Mediated channels enables the defense to
observe and control the application’s interaction
with devices on its own terms

1. Crumple Zone enforces application
specific preventive adaptation on container’s
interaction through mediated channels

2. Replay with Modification on
top of mediated containers to
facilitate immunity-focused
adaptation

HW layer HW layer
OS layer OS layer

App App

Precious
state

Precious
state

Disposable
state

Disposable
state

What is a hard problem: Novel Attacks

• Behavior invariants (e.g., deployer provided constraint

such as this web service should never make an outbound

connection) or something more drastic (e.g., a segfault)

indicates something went wrong

– But the real attack likely happened in the past

– Attacker has been successfully executing his tasks

– And until now, we had no clue

• How deal with the aftermath of such attacks?

18

4

e.g., A is corrupt when f(x,y,z)= true

e.g., rollback and restart,

but to which past state?

time Undesired condition

Attacker objective was achieved at tX
but we did not realize until tZ

tX tZ

Observed

by the CZ

policies

Work toward immunity

RwM Experimentation

Crumple Zone: VM-based Realization

19

• Each container is essentially a DomU VM

• Channels are pathways from the application to devices (Disk, UI, Network)

 Crumple
Zone(CZ)
are VMs
interposed on
basic
channels

Policy & Control

Xen

DDVM

Guest VM-1

Ethernet
Bridge

VM-3 acts as the logical
intermediate hop between
VM-1 and DDVM

Crumple Zones, enforcing policies on mediated channels are
built on specialized guest VMs like VM-2 and VM-3

Policy & Control

Guest VM-3Guest VM-2

VM-2 acts as the backend to VM-1 and frontend to DDVM for block devices

NW Interaction Storage Interaction Xen interrupts and signaling

App

Guest OS

APPVM NW CZVMST CZVM

 Only the Xen
hypervisor
and Dom0 is
treated as
TCB

 A3 Conglomerate: the collection of VMs dedicated to the defense of a protected
application

Replay With Modification: Motivation

• In a clean slate resilient and survivable host system context, it

should be possible to

– Reproduce application’s past execution

• With different levels of fidelity and control in a repeatable manner

– Explore alternate execution history

• Alternate line leading to an immune conglomerate

• Exploration of multiple lines unveiling details of novel attack faster

• RwM is A3’s contribution to address novel attacks

– If an immune conglomerate is found, then that attack is ineffective

– Provides an infrastructure as well as the collection of recorded

information and supporting tools for analysts and cyber defenders to

analyze a zero day attack and develop a countermeasure

• 2 levels of replay: Deterministic VM replay and Application Level

• Claim: synergistic combination is helpful in experiment-based failure

diagnosis and patch identification

20

Multi-Compiler Variants:

Utilizing A Diversity Generator

21

This is what is happening inside the diversity

generator

Binary Rewriting Binary Rewriting

Configuration Generator Configuration Generator

Compilation with transforms Compilation with transforms Set of transforms, each
with its own purpose

SRC SRC
 V’’

Compilation with aspects Compilation with aspects

SRC SRC

Aspect

Specified

Aspect
+

Multiple semantically
equivalent object code
variants with different
vulnerability profile

Object code variants with
new defensive behavior
(e.g., add a new filter in
Apache/PHP)

 V’’

V

Set of tools and
gadgets

 V’’

Object code variants with
added checks and
reporting

JVM SEL IPTables File System Block Storage

Permission Permission Quota Quota Collect statistic Collect statistic
 Spec

 P’’ P’’
Modifications to CZ
policies

E
X

E
C

U
T

E
 a

nd

T
R

A
N

S
F

O
R

M
 a

sp
ec

ts
 C

Z

IN
S

P
E

C
T

as

pe
ct

 C
Z

Multiplicity?

22

OS

Key

Key

Application

Traditional

• Cpu

• OS

• Memory

• Network

connection

Processor & Memory

Cyber security becomes an obvious

context

Processor & Memory

OS

Key

Key

Application

Dubious

Dubious

Application

Dubious

Application

Dubious

Application

Dubious

Application

Dubious

Application

Now/Emerging

• Multiple cores, with powerful cpus

• Powerful “feature rich” OS

• Mega memory

• High bandwidth always on network connectivity

Multiplicity?

23

Record and replay, experiment-based diagnosis, patching and

recovery!

Use diversity generator to create polymorphic components that

exhibit different vulnerability profile

Suddenly resources may not be that bountiful!

Processor & Memory

Host OS (Hypervisor)

Guest OS Guest OS Guest OS Guest OS

Dom0 Dom0

Guest OS Guest OS Guest OS Guest OS Guest OS Guest OS

Crumple Zone Application Crumple Zone Application

D
iv

e
rs

it
y

G
e
n
e
ra

to
r Experimen

t Controller

spawn

use

Multiplicity?

24

But wait– clouds are gathering steam!

Recorded information, Replay experiments, Diversity generation, Experiment-

based diagnosis and patching all can potentially be done in the cloud!

But have we come full circle? Do we really trust the cloud with our critical data

and computation?

Processor & Memory

Host OS (Hypervisor)

Guest OS Guest OS Guest OS Guest OS

Dom0 Dom0

Guest OS Guest OS

Crumple Zone Application

Guest OS Guest OS Guest OS Guest OS

Crumple Zone Application
Experimen
t Controller

D
iv

e
rs

it
y

G
e
n
e
ra

to
r

spawn

use

D
iv

er
si

ty

G
en

er
at

o
r

Guest OS Guest OS

Crumple Zone Application

Guest OS Guest OS

Crumple Zone Application

spawn

use

Fully Homomorphic Computing

 Computing Directly on Encrypted Information

25

Noise in Ciphertexts

• Ciphertexts are a combination of noise, the

public key and a message.

• The public key is a combination of noise and the

secret key.

• EvalMult operations “multiply” the noise in the

ciphertext.

• Decryption operations strip away the noise.

Huge Amounts of Data and Computation Beget

Special Purpose Solutions

26

FPGA-based Lattice FPGA-based Lattice
Crypto Primitives

Computation Flow On Untrusted

Host

FHE Operations FHE Operations
Encrypt, EvalAdd, EvalMult, Recrypt

CPU-Based CPU-Based
Primitives

SIPHER CPU libraries SIPHER CPU libraries

Selection of CPU libraries
for lattice-based primitives
Selection of CPU libraries

for lattice-based primitives

Source Program

Circuit Rep. of Circuit Rep. of
Program

Calls to FHE operations Calls to FHE operations

Translation of source program to
circuit representation

Translation of source program to
circuit representation

SIPHER FPGA Circuits SIPHER FPGA Circuits

Selection of FPGA circuits
for lattice-based primitives
Selection of FPGA circuits

for lattice-based primitives

GPU-Based GPU-Based
Primitives

SIPHER GPU libraries SIPHER GPU libraries

Selection of GPU libraries
for lattice-based primitives
Selection of GPU libraries

for lattice-based primitives

Selection implementation for FHE Evaluations Selection of calls to FPGA, CPU or GPU implementation for FHE Evaluations

High Level

Languages

Complexity 

Speed 

Middleware

Abstraction

Layers

Low Level

Implementation

Complexity 

Speed

Data Encrypted

with FHE Scheme

Untrusted host

supports running of

program on

encrypted data

FHE Operations

filter down to

appropriate FPGA,

CPU or GPU

implementation

based on available

resources.

Asymmetric Operation Location

Considerations

Whew!

• The Big Bang (of Higher Performance

Networked Diversity) Continues to Inflate

• Lot’s of Bottom Up Momentum Building across a

number of planes to use that advancing

Multiplicity

• Needs coupling with more Top Down concept-of-

operation/theory weaving

• And Plenty More to Do to Keep Us Busy for a

Long Time

29

