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Quantitative Software Models 

Q1  Assign values to program behaviors                                        
 Boolean case:  correct vs. incorrect behaviors     

 

Q2  Assign values to programs/properties                         
 Boolean case:  sets of behaviors (nondeterminism) 

 

Q3  Assign values to pairs of programs/properties   
 Boolean case:  preorders (refinement) 
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Q1  Assign Values To Program Behaviors 

a. Probabilities    

b. Resource use 

    worst case (sup) vs. average case (limavg) vs. accumulative (sum)    
(e.g., response time, power consumption) 

c. Quality measures 
 discounting vs. long-run averaging 



Q1  Example: Reliability Values 

a: ok                                                                                        
b: fail 

Discounted value (0 < d < 1):   a 

 aaaaaaaaaa...   1                                        
 aaaaaaaab...                  1 - d8     
 aaab...    1 - d3                                
 b...       0 



Q1  Example: Reliability Values 

a: ok                                                                                        
b: fail 

Discounted value (0 < d < 1):   a 

 aaaaaaaaaa...   1                                        
 aaaaaaaab...                  1 - d8     
 aaab...    1 - d3                                
 b...       0 

Long-run average value:  limavg a 

 aaaaaaaaaa...   1                                                 
 abaabaaab...   1  
 aaabaaabaaab...  3/4                                
 babbabbba...   0    
 aaaaaabbb...   0                   
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Quantitative Synthesis 
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Games for Quantitative Synthesis 

1  Optimizing Resource Use / Performance 
 -costs refer to resource use                                                    
 (e.g., power consumption, context switch)    

 -optimize peak or accumulative or average resource use                    
-formalized using sup or sum or limavg objectives   

 -synthesize schedules, routes, lock placement 



Fine grained vs. coarse grained locks: 
 -fine grained locks allow more interleavings,                   
 and therefore cause less waiting of threads 

 -coarse grained locks cause fewer context switches, 
 which are expensive 

Process 1: 

 loop 
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Games for Quantitative Synthesis 

1  Optimizing Resource Use / Performance 

2  Preference between Different Programs 

  -qualitative property, but some programs preferred over others
 -can be formalized using lexicographic objectives                                  

h f, g1, ... gn i 

qualitative specification quantitative objectives 
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Conclusions 

- We need to move from boolean program correctness criteria to 
quantitative program preference metrics. 

-  “Quantitative” is more than “timed” and “probabilistic.” 

-  Weighted automata over infinite words offer a quantitative 
specification language: 

 Limit average
       Sum/

energy                                                                            
 Discounting        

-  Games with quantitative objectives offer algorithmic solutions:  

 Quantitative synthesis                                                   
 Simulation distances       


