
From Qualitative to Quantitative
Theories of Software

Tom Henzinger
IST Austria

Qualitative Software Theories

Property

Yes/No

Analysis

Program

Qualitative Software Theories

Yes/No

Analysis

Property Program  (R) } G) Kripke
Structure

Qualitative Software Theories

Quantitative
Program

Quantitative
Property

Yes/No

Analysis

Timed
Automaton  (R) }· 5 G)

Qualitative Software Theories

Yes/No

Analysis

8 (R) Pr(}
G) ¸ 0.5)

Markov
Process

Quantitative
Program

Quantitative
Property

Quantitative Software Theories

R
-measure of “fit” between program and property
-could involve cost, quality, performance, etc.

Analysis

Quantitative
Program

Quantitative
Property

Quantitative Software Theories

R

Analysis

 (R) } G)

The less time between
R and G, the better.

Quantitative
Program

Quantitative
Property

-measure of “fit” between program and property
-could involve cost, quality, performance, etc.

Quantitative Software Theories

R

Analysis

The fewer
“unnecessary” grants G,
the better.

Quantitative
Program

Quantitative
Property

-measure of “fit” between program and property
-could involve cost, quality, performance, etc.

 (R) } G)

Qualitative Software Theories

S1 S’1 S2 S’’2 S’2

P1 P2 P3

Qualitative Software Theories

S1 S’1 S2 S’’2 S’2

P1 P2 P3

Quantitative Software Theories

S1 S’1 S2 S’’2 S’2

P1 P2 P3

0.9 0.8 0.5
0.7

Quantitative Software Theories

S1 S’1 S2 S’’2 S’2

P1 P2 P3

0.9 0.8 0.5
0.7

0.2

Quantitative Software Models

Q1 Assign values to program behaviors
 Boolean case: correct vs. incorrect behaviors

Q2 Assign values to programs/properties
 Boolean case: sets of behaviors (nondeterminism)

Q3 Assign values to pairs of programs/properties
 Boolean case: preorders (refinement)

Q1 Assign Values To Program Behaviors

a. Probabilities

Q1 Assign Values To Program Behaviors

a. Probabilities

b. Resource use

 worst case (sup) vs. average case (limavg) vs. accumulative (sum)
(e.g., response time, power consumption)

Q1 Assign Values To Program Behaviors

a. Probabilities

b. Resource use

 worst case (sup) vs. average case (limavg) vs. accumulative (sum)
(e.g., response time, power consumption)

c. Quality measures
 discounting vs. long-run averaging

Q1 Example: Reliability Values

a: ok
b: fail

Discounted value (0 < d < 1):  a

 aaaaaaaaaa... 1
 aaaaaaaab... 1 - d8
 aaab... 1 - d3
 b... 0

Q1 Example: Reliability Values

a: ok
b: fail

Discounted value (0 < d < 1):  a

 aaaaaaaaaa... 1
 aaaaaaaab... 1 - d8
 aaab... 1 - d3
 b... 0

Long-run average value: limavg a

 aaaaaaaaaa... 1
 abaabaaab... 1
 aaabaaabaaab... 3/4
 babbabbba... 0
 aaaaaabbb... 0

sup or
limavg

sup or exp

Q2 Assign Values To Programs

relative to input distribution

a

a

a

b b

Q3 Assign Distances To Programs

a

a

a

a

b b

0

Q3 Example: Correctness Distance

a

a

a

a

b b

0
1

b

Q3 Example: Correctness Distance

a

a

a

b

b b

1/3

Q3 Example: Correctness Distance

a

a

a

b

b b

b

1/3
1/4

b b

a

Q3 Example: Correctness Distance

a

a

a

a

b b

2/3

Q3 Example: Robustness Distance

a

a

a

a

b b

a

a

b

2/3
1/3

Q3 Example: Robustness Distance

References

1  Simulation and bisimulation distances
[CONCUR 2010 Cerny et al.]

2  Quantitative languages
[CSL 2008, LICS 2009, CSL 2011 Boker et al.]

3  Quantitative synthesis
[CAV 2009, CAV 2010, CAV 2011 Cerny et al.]

Qualitative Software Theories

Property

Yes/No

Analysis

Program

Qualitative Software Theories

Property

Correct Program

Synthesis

Qualitative Software Theories

ω-Regular
Automaton

Correct Program =
Winning Strategy

Graph Game with
ω-Regular Objective

Quantitative Synthesis

Optimal Program

Synthesis

Quantitative
Property

Quantitative Synthesis

Optimal Program =
Optimal Strategy

Weighted
Automaton

Graph Game with
Quantitative Objective

worst case

Quantitative Synthesis

Optimal Program =
Optimal Strategy

Weighted
Automaton

Stochastic Graph Game
with Quantitative Objective

avg case

Games for Quantitative Synthesis

1  Optimizing Resource Use / Performance
 -costs refer to resource use
 (e.g., power consumption, context switch)

 -optimize peak or accumulative or average resource use
-formalized using sup or sum or limavg objectives

 -synthesize schedules, routes, lock placement

Fine grained vs. coarse grained locks:
 -fine grained locks allow more interleavings,
 and therefore cause less waiting of threads

 -coarse grained locks cause fewer context switches,
 which are expensive

Process 1:

 loop

 access x;

 access y

 end.

Process 2:

 loop

 access x;

 access y

 end.

Fine grained vs. coarse grained locks:
 -fine grained locks allow more interleavings,
 and therefore cause less waiting of threads

 -coarse grained locks cause fewer context switches,
 which are expensive

Process 1:

 loop

 access x;

 access y

 end.

Process 2:

 loop

 access x;

 access y

 end.

Fine grained vs. coarse grained locks:
 -fine grained locks allow more interleavings,
 and therefore cause less waiting of threads

 -coarse grained locks cause fewer context switches,
 which are expensive

Process 1:

 loop

 access x;

 access y

 end.

Process 2:

 loop

 access x;

 access y

 end.

Games for Quantitative Synthesis

1  Optimizing Resource Use / Performance

2  Preference between Different Programs

 -qualitative property, but some programs preferred over others
 -can be formalized using lexicographic objectives

h f, g1, ... gn i

qualitative specification quantitative objectives

 Request-Grant Buchi Automaton

Every request is followed by a grant.

RG
rg
rG

Rg

Rg
rg

RG
rG

 Request-Grant limavg Automaton 1

Following a request, all steps until the next grant are penalized.

RG: 0
rg: 0
rG: 0

Rg: 1

Rg: 1
rg: 1

RG: 0
rG: 0

 Request-Grant limavg Automaton 2

All unnecessary grants are penalized.

RG: 0
rg: 0
rG: 1

Rg: 0

Rg: 0
rg: 0

RG: 0
rG: 0

Conclusions

- We need to move from boolean program correctness criteria to
quantitative program preference metrics.

Conclusions

- We need to move from boolean program correctness criteria to
quantitative program preference metrics.

-  “Quantitative” is more than “timed” and “probabilistic.”

Conclusions

- We need to move from boolean program correctness criteria to
quantitative program preference metrics.

-  “Quantitative” is more than “timed” and “probabilistic.”

-  Weighted automata over infinite words offer a quantitative
specification language:

 Limit average
 Sum/

energy
 Discounting

Conclusions

- We need to move from boolean program correctness criteria to
quantitative program preference metrics.

-  “Quantitative” is more than “timed” and “probabilistic.”

-  Weighted automata over infinite words offer a quantitative
specification language:

 Limit average
 Sum/

energy
 Discounting

-  Games with quantitative objectives offer algorithmic solutions:

 Quantitative synthesis
 Simulation distances

