
Extreme Specialization
Too-much Bloody Determinism

CREST Workshop 22/03/12

Steven Hand

1

Multicore, Manycore & Mayhem

• The era of M*core is upon us
– Standard desktop machines now quad core (and

standard servers are 2x or 4x this)
– 8- and 12-core processors around the corner
– Intel MIC & Tilera & foor & bar & baz => AIEE!!!

• Considerable reaction from academia & industry
– Moore’s law is dead!
– We need new paradigms! (or at least new software)

• This talk will cover some of my thoughts on this
– Warning: speculative, argumentative, XXXative – and

quite possibly plain wrong!

3

10-core Xeon
(Westmere EX)

16K cores?

2020

Multicore, Manycore & Mayhem

• The era of M*core is upon us
– Standard desktop machines now quad core (and

standard servers are 2x or 4x this)
– 8- and 12-core processors around the corner
– Intel MIC & Tilera & foor & bar & baz => AIEE!!!

• Considerable reaction from academia & industry
– Moore’s law is dead!
– We need new paradigms! (or at least new software)

• This talk will cover some of my thoughts on this
– Warning: speculative, argumentative, XXXative – and

quite possibly plain wrong!

Is there really a problem?

• Today’s server systems work pretty well
– HPC and similar – extremely parallel, scale easily
– Existing server apps – extremely parallel, scale easily
– OSes fine too – TxLinux (SOSP’07) shows max 12%
– Brief panic (Corey, OSDI’08) but then all fine (OSDI’10)

• Transactional memory not reqd for performance
– Roy (HotPar’09) shows zero speed up for Apache
– TxLinux shows 4-8% benefit from HTM (1% for x16!)

• And if they don’t, VMMs (or other strongly partitioned
OSes like Barrelfish) provide a decent solution
– Disco (SOSP’95) was rather prescient…

But what about new applications?

• One argument is that (most) programmers just
shouldn’t worry about -ism
– although, anecdotally, many seem to :-(

• Instead focus on strategies (like divide and conquer)
– Or on annotations (OpenMP, *-SS, …)

– Or on libraries (Intel’s TBB, java.util.concurrent, ..)

– Or on task-parallel programming frameworks (e.g. Cilk or
MapReduce/Phoenix or Ciel or …)

• Last can potentially support:
– Transparent scaling (up and down = FT story), and

– Code mobility (desktop, cloud, mobile, GPGPU (?), …)

6

Cloud Run-time Environments

• If we move to new programming paradigms,
great potential for scalability and fault tolerance

• But MapReduce/Dryad/Ciel are user-space
frameworks in a traditional OS (in a VM!)
– Do we really need all these layers?

• One possibility is to build a “custom” OS for the
cloud (or at least for data intensive computing)
– E.g. Xen powers most cloud computing platforms

– It forms a stable virtual hardware interface

– Therefore, can compile apps directly to Xen “kernels”

MirageOS: Specialized Kernels

MirageOS: Current Design

Memory Layout

64-bit para-virtual memory layout
No context switching
Zero-copy I/O to Xen
Super page mappings for heap

Concurrency

Cooperative threading and events
Fast inter-domain communication
Works across cores and hosts

DNS: BIND (C) vs Deens (ML)

DNS: with functional memoisation

SQLite performance vs PV Linux

MirageOS: Status

• Open source, and has self-hosted(!) web site

• Alpha quality code, but under active
development at Cambridge & elsewhere

– Code, tutorial and slides on web site

– Recent work includes OpenFlow software

– Supported by EPSRC, Verisign and DARPA

URL: http://openmirage.org/

13

http://openmirage.org/

Peering into The Future

• Unlikely that everyone will move to MirageOS and
ocaml overnight ;-)

• Q: can we develop tools and systems which help
regular programmers to exploit M*-core?
– not about “auto parallelization” in the traditional sense

(i.e. extracting fine-grained parallelism)
– don’t want to make SPECint (or Parsec) faster

• Our focus is on two related strands:
– semi-automatic transformation of programs into task-

parallel / data-flow form (c/f SOAAP), and
– semi-automatic transformation of single threaded code to

exploit additional cores

14

The Death of Multiprogramming

• Widely overlooked problem with M*-core:

– What do we do when a thread blocks?

– Traditional solution (run another thread) doesn’t work
so well if very large #cores

• How can we reduce wait time ?

– Amount of time ‘the thread’ spends unable to run

• One possibility is extreme specialization:

– Combines ideas from partial evaluation, memoization,
dynamic specialization and speculation!

15

Specializing File I/O

• One student looking at desktop applications
– e.g. at start of day, load XML configuration file from

disk to generate a set of program variables

– can concretize values at compile stage, and partially
evaluate (lots of constant propagation!)

– can also elide unreachable paths (dead code
elimination), and unroll loops, and inline functions

– can even eliminate threads (or aio) – e.g. for font
search paths, plugin scans, etc, etc

• So far seems promising… at least for start-up…

16

Dealing with Uncertainty

• At some stage your analysis breaks down
– i.e. cannot continue with sound optimizations

• This is an opportunity to gamble:
– Guess which path will be taken (i.e. speculate)
– Can also speculate on data values

• In vanilla form, this is just symbolic execution
– Remember the path predicates
– Generate code guarded appropriately
– Keep original stuff around just in case

• Have some more extreme run-time options too:
– e.g. force values into well-behaved ranges (Rinard)

17

A Use for Many-Core?

• May well be many plausible values with
associated paths:
– Great!

– Use lots of single-core almost-replicas, each
specialized for specific cases

– Fire up more as and when you encounter more
uncertainty (e.g. I/O operations)

– Garbage collect as needed

– (Reserve one core for general case if you want ;-)

• System now deterministic in K different universes

18

19

Wrapping it up

• -programming can/should be a specialty
– don’t expect ‘regular’ programs to do assembly

• Develop a set of useful frameworks/languages
– Different solutions for different patterns
– Already made a great start on this
– Personally expect (hope?) <20 will be enough

• Real challenge is how to use many cores to make
life better for the masses
– app-per-core (or partially evaluated app-per-core)

seems like it should work to me

• But then again, I could be wrong ;-)

20

