
Mx: Safe Software Updates
via Multi-version Execution

Petr Hosek Cristian Cadar
Software Reliability Group
Department of Computing

22nd March 2012

18th CREST Workshop, London, UK

The fundamental problem with program maintenance is
that fixing a defect has a substantial (20*-50%) chance
of introducing another. So the whole process is two
steps forward and one step back.

 — Fred Brooks, 1975

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L. How Do Fixes Become Bugs? ESEC/FSE’11

*≥14.8~24.4% for major operating system patches

“
”

2

3

Motivation

Software evolves, with new versions and patches being
released frequently
Software updates often present a high risk
Many users refuse to upgrade their software…
…relying instead on outdated versions flawed with
vulnerabilities or missing useful features and bug fixes

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

File (re)compression in mod_compress_physical

if (use_etag)
 etag_mutate(con->physical.etag, srv->tmp_buf);
}

 etag_mutate(con->physical.etag, srv->tmp_buf);

Powers several popular sites such as YouTube, Wikipedia, Meebo

April 2009 April 2010

Bug diagnosed

1 year

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

Bug introduced Bug fixed

March 2010

File (re)compression in mod_compress_physical

if (use_etag)

}

 etag_mutate(con->physical.etag, srv->tmp_buf);

6

Goals

Improve the software update process to provide
Benefits of the newer version
Stability of the older version

7

Solution

Multi-version execution based approach
Run both versions in parallel
Use output of correctly executing version at any
given time

8

Challenges

1. Allowing multiple versions to run side-by-side

2. Handling divergences and recovering from failures

(in the context of multi-core CPUs)

9

Challenge 1: MV execution environment

Multi-version execution environment
Synchronize execution of multiple versions
Multi-version app acts as one to the external world
Reasonable performance overhead
Support for native applications

Operating System

Multi-version
application

Conventional
application

Mx

Synchronization

Synchronization (and virtualization) at the level of
system calls

10

Version 1 Version 2

Mx

Operating System
System calls

System calls System calls

System calls define external behavior

11

...
write(1, “3\n”, 2) = 2
write(1, “4\n”, 2) = 2
write(1, “6\n”, 2) = 2
write(1, “7\n”, 2) = 2
...

int arr[] = { 6, 4, 3, 7 };
print_sorted(arr, 4);

Version 1

void print_sorted(int *arr, size_t len)
{
 int sarr[len];
 memcpy(sarr, arr, sizeof(sarr);

 bsort(sarr, len, sizeof(int), cmp);
 for (int i = 0; i < len; ++i)
 printf(“%d\n”, sarr[i]);
}

Version 2

void print_sorted(int *arr, size_t len)
{
 int sarr[len];
 memcpy(sarr, arr, sizeof(sarr);

 qsort(sarr, len, sizeof(int), cmp);
 for (int i = 0; i < len; ++i)
 printf(“%d\n”, sarr[i]);
}

12

95% of revisions introduce no change*

*Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in the tech report)
Measured using lighttpd regression suite on 164 revisions (~10 months)

External behavior evolves sporadically

0

53

106

159

212

265

318

371

Ed
it

di
st

an
ce

 b
et

we
en

 s
ys

te
m

 c
al

l t
ra

ce
s

10 14

42
24 7

273

1

13

Challenge 2: Handling divergences

Handle divergences across versions
Accurately detect divergences
Recover from failures
Re-synchronize executions

14

Failure Recovery: Scope

Small differences in external behavior
E.g., two minor versions

Divergences are crashes (SIGSEGV) v1

crash point1

v2

crash point2

clone
process

Failure Recovery Process

15 15

divergence
point

copy
code

copy
code

synchronization
point

“runtime code patching”

s2

s1

V2 “crashing” V1 “correct”
1. Revert to last successful

synchronization point

2. Copy code from “correct”
version

3. Run to divergence point

4. Revert back to original code

5. Restart multi-version execution

16

Mx Prototype

System targets multi-core processors
Support for x86 and x86-64 Linux systems
Combines system call interposition, OS-level
checkpointing, binary static analysis, and
runtime code patching

SEA

MXM

REM

Mx

17

SEA: Static Binary Analyzer

Create various mappings between the two version
binaries

Static analysis of binary executables
Extracting function symbols from binaries
Machine code disassembling and analysis
Binary call graph reconstruction SEA

MxM

REM

Mx

18

MxM: Multi-eXecution Monitor

Execute and monitor multi-version applications
Synchronization at the level of system calls
System call interposition (via ptrace interface)

Environment virtualization (i.e. files and sockets)
Support for multi-process applications

SEA

MxM

REM

Mx

19

Runtime code patching and fault recovery
Runtime stack manipulation
Breakpoint insertion and handling
OS-level checkpointing (using clone syscall)

SEA

MxM

REM

Mx

REM: Runtime Execution Manipulator

Preliminary Results

20

Survived a number of crash bugs in two popular servers

Web-server used by
several popular sites

such as YouTube,
Wikipedia, Meebo

Key-value data structure
server, used by popular

services such as
GitHub, Digg, Flickr

21

robj *o = lookupKeyRead(c->db, c->argv[1]);
if (o == NULL) {
 addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
 for (i = 2; i < c->argc; i++) {
 addReply(c,shared.nullbulk);
 }
 return;
} else {
 if (o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return;
 }
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));

HMGET command hmgetCommand function
robj *o, *value;
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return; <- missing return
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
for (i = 2; i < c->argc; i++) {
 if (o != NULL && (value = hashGet(o,c-
>argv[i])) != NULL) {
 addReplyBulk(c,value);
 decrRefCount(value);
 } else {
 addReply(c,shared.nullbulk);
 }
}

Refactor

Apr 13, 2010 Oct 27, 2010

Bug diagnosed Bug introduced Bug fixed

Oct 12, 2010

Bug may result in loosing some
or even all of the stored data

22

Maximum distance between versions

Application Max distance Time span
lighttpd #2169 87 2 months 2 days
lighttpd #2140 12 2 months 1 day

redis #344 27 6 days

23

120%
113%

131% 133%

107% 104% 104%

156%

104%

128%

115%

144%

0

0.5

1

1.5

2

Ex
ec

ut
io

n
Ti

m
e

(p
er

ce
r)

Native Mx

21.48% overhead on SPEC CINT CPU2006

Taken on 3.50 GHz Intel Xeon E3 1280 with 16 GiB of RAM, Linux kernel 3.1.9
SPEC CINT CPU2006 1.2

WiP: up to 17x for some other benchmarks

Selected Related Work

N-version programming: A fault- tolerance approach to reliability of software operation.
Chen, L., and Avizienis, A. FTCS’78

Using replicated execution for a more secure and reliable web browser. Xue, H.,
Dautenhahn, N., and King, S. T. NDSS’12

Distinct code bases, manually-generated

Diehard: Probabilistic memory safety for unsafe languages. Berger, E, and Zorn, B. PLDI’06

N-variant systems: a secretless framework for security through diversity. Cox, B., Evans,
D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong, A., and Hiser, J.
USENIX Security’06

Run-time defense against code injection attacks using replicated execution. Salamat, B.,
Jackson, T., Wagner, G., Wimmer, C., and Franz, M. IEEE TDSC ‘11

Variants of the same code, automatically-generated

Multi-version Software Updates. Cadar, C., and Hosek, P. HotSWUp’12 (position paper)

Safe Software Updates via Multi-version Execution. Hosek, P., and Cadar, C. Tech Rep 2011

Different manually-evolved versions of the same code base

25

Summary

Novel approach for improving software updates
Based on multi-version execution
Our prototype Mx can survive crash bugs in real apps

Many opportunities for future work
Better performance
 Kernel modules, paravirtualization API, skipping safe
 code, etc.

Support for more complex code changes
 Automatic stack reconstruction, inference of data
 structure changes, epoch-based system call
 record & replay

