The SwissBox project

- Build an open source data appliance
 - Hardware
 - Software

Gustavo Alonso - Systems Group - ETH Zürich
Goals

- Robust by design
- Scalable by design
- Fully predictable
- Behavior immune to peak loads (read or write)
- Efficient use of modern hardware
 - Cost efficiency
 - Power/space/management complexity
DATA APPLIANCE

- Database in a box
 - Funny database
 - Funny box
- Examples:
 - Exascale (Oracle)
 - Twin-Fin (Netezza – IBM)
 - NewDB (SAP)
 - Teradata
• Intelligent storage manager
• Massive caching
• RAC based architecture
• Fast network interconnect
The Multicore Challenge
Data parallelism

- Relational model is highly parallel
 - Independent tables
 - Orthogonal operators
 - Intra- and Inter-query parallelism
 - Most successful commercial parallel systems

- And yet ...
Database engines and multicore

Postgres TPC-WB 20GB DB

Salomie, Subasu, Giceva, Alonso, EuroSys 2011
Database engines and multicore

MySQL TPC-WB 20 GB DB

- 48 cores
- 24 cores
- 8 cores

Throughput (TPS)

Clients

MySQL TPC-WB 20 GB DB

Salomie, Subasu, Giceva, Alonso, EuroSys 2011
CLAIM #1

Adding resources to a troubled application does not necessarily lead to improvements
Size matters

- The challenge of appliances is the unprecedented power available
 - 64 cores AMD, 256 GB memory, 10 Gb network + 3 TB NAS: ~14k CHF
 - Imagine a rack full of those

Is your job large enough?
CLAIM #2

Large scale parallelism sensible only when looking at aggregated loads
Load interaction

In a highly parallel system, multiple jobs will get on each other’s way:

- Synchronization
- Data movement
- Resource arbitrage
- Resource capping
- Heavy vs. light jobs
- Management and coordination
Load interaction in practice

Giannikis, Alonso, Kossmann, PVLDB 2012
CLAIM #3

Robustness and performance can only be obtained by minimizing interaction.
Locality in the XXIst century

Each package has:
- 12 cores
- 4HT ports
- 4 memory channels

Each die has:
- 6 cores
- 4HT ports
- 2 memory channels
CLAIM #4

Robustness and definitely performance can only be achieved on fixed data paths
Architecture

Parallel hardware accelerator

other data centers
CLAIM #5

Traditional layered architectures (HW/OS/VM/App) do not work in these environments
CLAIM #6

Strong notions of consistency (serializability) and atomicity of complex programs no longer feasible
SWISSBOX

Alonso, Kossmann, Roscoe, CIDR 2011
SwissBox: the project

- Great opportunity for research
 - Rethink the entire system software stack
 - Redesign the operating system, database, and storage system architecture
 - Software – hardware co-design
SwissBox: the product

- Direct collaboration and input from industry
- Great demand for tailored systems
 - Big data
 - Highly demanding applications
 - Low power / high efficiency
Claim # 1 => Deterministic behavior

Adding resources to an application does not necessarily lead to a performance improvement

System performance completely determined at design time through simple parameters
Clock Scan

Gustavo Alonso - Systems Group - ETH Zürich
Claim # 2 => Batch processing

Large scale parallelism makes sense only when considering aggregated loads

Execution proceeds in batches (1000’s of queries per batch)
Crescando runs selection and projections in one set of cores

SharedDB runs joins on the streams from Crescando, thousands of queries at a time
Claim # 3 => No load interaction

Robustness and performance can only be obtained by minimizing interaction

Operators are orthogonal and work on clearly delimited resources
Predictability, robustness
Claim # 4 => No dynamic scheduling

Robustness (and definitely performance) can only be achieved on fixed data paths

No dynamic scheduling, operators are always on and at fixed locations
Single plan: operator per core
Raw performance
Claim # 5 => Open stack

Traditional layered architectures (HW/OS/VM/App) do not work in these environments

Operating System / Database co-design
Claim # 6 => Consistency

Strong notions of consistency (serializability) and atomicity of complex programs no longer feasible

Snapshot isolation, multiversions, eventual consistency
Where are we?

- Fully predictable performance
 - Accurate analytical model
 - Easily tunable / scalable
- Tolerates high peaks of reads and updates without compromising SLA
- Intelligent storage engine
Next steps

- Hardware acceleration
- Query optimizer
- Parallel operators
- OS / DB interfaces
In the future

- Virtualized operators
- Flexible, elastic deployment through OS interaction
- Scalability through operator/plan replication across cores and machines
- Hardware acceleration by operator offloading and in-network data processing
- Operator parallelism
SwissBox in a nutshell

- A new way to process data
 - Parallel, predictable by design
 - Not optimal but good enough
 - Co-design at all levels

- Great opportunity for research
 - Redo everything from scratch